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THE COMPUTATION OF LOW MULTILINEAR RANK
APPROXIMATIONS OF TENSORS VIA POWER SCHEME AND

RANDOM PROJECTION∗
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Abstract. This paper is devoted to the computation of low multilinear rank approximations of
tensors. Combining the stretegy of power scheme, random projection, and singular value decomposi-
tion, we derive a three-stage randomized algorithm for the low multilinear rank approximation. Based
on the singular values of sub-Gaussian matrices, we derive the error bound of the proposed algorithm
with high probability. We illustrate the proposed algorithms via several numerical examples.
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1. Introduction. A tensor is an N -dimensional array of numbers denoted by
script notation A ∈ RI1×I2×···×IN with entries given by ai1i2...iN ∈ R for in =
1, 2, . . . , In and n = 1, 2, . . . , N . Without loss of generality, we assume that N = 3.
Our results using third-order tensors can be straightforwardly generalized to higher-
order cases. Subtle differences will be mentioned when they exist. In this paper, we
consider the low multilinear rank approximation of a third-order tensorA ∈ RI1×I2×I3 ,
which is defined as follows.

Problem 1.1. Suppose that A ∈ RI1×I2×I3 . For given three integers µ1, µ2, and
µ3, the goal is to require three columnwise orthogonal matrices Qn ∈ RIn×µn with
µn ≤ In, such that

ai1i2i3 ≈
I1,I2,I3∑
j1,j2,j3=1

aj1j2j3p1,i1j1p2,i2j2p3,i3j3 ,

where Pn = QnQ>n ∈ RIn×In is an orthogonal projection.

For the solution of Problem 1.1, we have the following statements.
(a) Problem 1.1 is equivalent to the low multilinear rank approximation of ten-

sors, which can be solved by a number of recently developed algorithms, such
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as higher-order orthogonal iteration [15], the Newton–Grassmann method
[20], the Riemannian trust-region method [30], the quasi-Newton method
[53], semidefinite programming [42], and Lanczos-type iteration [23, 52].

(b) When the columns of each Qn are extracted from the mode-n unfolding ma-
trix A(n), then, the solution of Problem 1.1 is called a CUR-type decomposi-
tion [5, 17, 24, 39, 44, 45] of tensor A, which can be obtained using different
versions of the cross approximation method.

(c) When the entries ofA and Qn are nonnegative, then Problem 1.1 is sometimes
called a nonnegative Tucker decomposition [21, 70, 71, 73].

Randomized algorithms have recently been applied to matrix and tensor decom-
positions. Interested readers are referred to three surveys [18, 38, 68] for more de-
tails about the randomized algorithms for low rank matrix approximations. Some
researchers focus on the computation of the CANDECOMP/PARAFAC decomposi-
tion and the CUR-type decomposition via the random projection strategy; e.g., see
[3, 4, 17, 65].

Zhou, Cichocki, and Xie [72] proposed a distributed randomized Tucker decompo-
sition for arbitrarily large tensors with relatively low multilinear ranks. Navasca and
Pompey [43] directly applied the randomized algorithms for low rank matrix approx-
imations [38] to compute the low multilinear rank approximation. Che and Wei [8, 9]
designed adaptive randomized algorithms for computing the low multilinear rank ap-
proximation of tensors and approximate tensor train decomposition. More recently,
Che, Wei, and Yan [10] presented an efficient randomized algorithm for the low multi-
linear rank approximation based on the random projection strategy and basic matrix
decompositions.

In terms of CPU time, Tucker-SVD in [10] is faster than existing algorithms, such
as tucker ALS, mlsvd, lmlra aca, Adap-Tucker, ran-Tucker, and mlsvd rsi, for the
computation of low multilinear rank approximations. However, in terms of relative
error, Tucker-SVD is worse than these algorithms in some senses. Hence, the main
aim of our work is to design a numerical algorithm for computing low multilinear
rank approximations via random projection and power scheme, which is denoted by
Tucker-pSVD. Tucker-pSVD needs more time than Tucker-SVD, but in terms of rela-
tive error, Tucker-pSVD is better than Tucker-SVD and competitive with tucker ALS,
mlsvd, and mlsvd rsi. Tucker-pSVD requires O(KI4) operations, where K is the num-
ber of the power scheme. When K = 1, both Tucker-pSVD and mlsvd need O(I4)
operations. However, when a faster but possibly less accurate eigenvalue decomposi-
tion to compute the factor matrices is used by applying mlsvd, mlsvd is faster than
Tucker-pSVD, and slower than Tucker-SVD. In terms of CPU time, Tucker-pSVD is
faster than mlsvd with the MATLAB SVD routine.

To be specific, the proposed algorithm can be divided into three stages. First,
we obtain three temporary tensors Ãn, given in (3.3), from A ∈ RI1×I2×I3 . Then, we
compute three product tensors

B1 = Ã1 ×2 G1,2 ×3 G1,3 ∈ RI1×I2×I3 , B2 = Ã2 ×2 G2,1 ×3 G2,3 ∈ RI2×I1×I3 ,

B3 = Ã3 ×2 G3,1 ×3 G3,2 ∈ RI3×I1×I2 ,

where the entries of Gn,m ∈ RLm×Im are independent and identically distributed
(i.i.d.) Gaussian random variables of zero mean and unit variance, with m,n = 1, 2, 3
and m 6= n. Finally, for each n, an approximate basis of mode-n unfolding of A is
computed by applying the SVD to mode-1 unfolding of Bn. This algorithm can be
viewed as an improvement of Tucker-SVD in [10], and a generalization of the work
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in [48] from matrices to tensors. Numerical examples illustrate that the proposed
algorithm is efficient for the low multilinear rank approximation of a tensor with any
given multilinear rank.

1.1. Notations and organizations. Throughout this paper, I, J , and N will
be reserved to denote the index upper bounds, unless stated otherwise. We use
lowercase letters x, u, v, . . . for scalars, lowercase bold letters x,u,v, . . . for vectors,
bold capital letters A,B,C, . . . for matrices, and calligraphic letters A,B, C, . . . for
higher-order tensors. This notation is consistently used for lower-order parts of a
given structure. For example, the entry with row index i and column index j in a
matrix A, i.e., (A)ij , is symbolized by aij (also (x)i = xi and (A)i1i2i3 = ai1i2i3).

We use ‖x‖2 and x> to denote the 2-norm and the transpose of the vector x ∈ RI ,
respectively. 0 denotes the zero vector in RI . We use A⊗B to denote the Kronecker
product [22] of matrices A ∈ RI×J and B ∈ RK×L. A† represents the Moore–
Penrose inverse [22, 67] of A ∈ RI×J . SI is a symmetric group of degree I on the set
{1, 2, . . . , I}.

The rest of our paper is organized as follows. Some basic results are introduced
in section 2, such as, basic operations and higher-order SVDs of tensors and singu-
lar values of random matrices. Two three-stage randomized algorithms for the low
multilinear rank approximation are presented in section 3. In this section, we also
analyze probabilistic error bounds and computational complexity of these two algo-
rithms. The probabilistic error bounds are proved in section 4. We illustrate our
algorithms via numerical examples in section 5. We conclude this paper and discuss
future research topics in section 6.

2. Preliminaries. We review the basic notations and concepts involving tensors
used in this paper. The mode-n product [13, 27, 31] of a real tensor A ∈ RI1×I2×I3 by
a matrix B ∈ RJn×In , denoted by C = A×n B, is

n = 1 : cj1i2i3 =

I1∑
i1=1

ai1i2i3bj1i1 ,

n = 2 : ci1j2i3 =

I2∑
i2=1

ai1i2i3bj2i2 ,

n = 3 : ci1i2j3 =

I3∑
i3=1

ai1i2i3bj3i3 .

For any given tensorA ∈ RI1×I2×I3 and three matrices F ∈ RJn×In , G ∈ RJm×Im ,
and H ∈ RJ′

n×Jn , one has [31]

(A×n F)×m G = (A×m G)×n F = A×n F×m G, (A×n F)×n H = A×n (H ·F)

with m 6= n = 1, 2, 3, where “·” represents the multiplication of two matrices with
appropriate sizes.

Scalar products and the Frobenius norm of a tensor are extensions of the well-
known definitions, from a matrix to a tensor of an arbitrary order [14, 31]. Suppose
that two tensors A,B ∈ RI1×I2×I3 , the Frobenius norm of a tensor A is given by
‖A‖F =

√
〈A,A〉, and the scalar product 〈A,B〉 is defined as [14]

〈A,B〉 =

I1,I2,I3∑
i1,i2,i3=1

ai1i2i3bi1i2i3 .
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Generally speaking, the mode-n unfolding matrix of a third-order tensor can be
understood as the process of the construction of a matrix containing all the mode-
n vectors of the tensor. The order of the columns is not unique and the unfolding
matrix of A ∈ RI1×I2×I3 , denoted by A(n), arranges the mode-n fibers into columns of
this matrix. More specifically, a tensor element (i1, i2, i3) maps on a matrix element
(in, j), where

n = 1 : j = i2 + (i3− 1)I2; n = 2 : j = i1 + (i3− 1)I1; n = 3 : j = i1 + (i2− 1)I1.

We recapitulate the mode-(1, 2) product [1, 12] (called tensor-tensor product) of
two tensors A ∈ RI1×I2×I3 and B ∈ RJ1×J2×J3 with common modes I1 = J2 that
produces an order-4 tensor C = A×2

1B ∈ RI2×I3×J1×J3 , where its entries are given by

ci2i3j1j3 =

I1∑
i1=1

ai1i2i3bj1i1j3 =

J2∑
j2=1

aj2i2i3bj1j2j3 .

Similarly, for given m ∈ {1, 2, 3} and n ∈ {1, 2, 3}, we can also define the mode-(m,n)
product of A and B with Im = Jn, which is denoted as A×nm B.

2.1. Tucker decomposition and low multilinear rank approximations.
A Tucker decomposition [60] of a tensor A ∈ RI1×I2×I3 is defined as

(2.1) A ≈ G ×1 U(1) ×2 U(2) ×3 U(3),

where U(n) ∈ RIn×Rn are called the mode-n factor matrices and G ∈ RR1×R2×···×RN

is called the core tensor of the decomposition.
The Tucker decomposition is closely related to the mode-n unfolding matrix A(n)

with n = 1, 2, 3. In particular, the relation (2.1) implies

A(1) ≈ U(1)G(1)(U
(3) ⊗U(2))>,

A(2) ≈ U(2)G(2)(U
(3) ⊗U(1))>,

A(3) ≈ U(3)G(3)(U
(2) ⊗U(1))>.

It follows that the rank of the approximations to A(n) in the above equations is

less than or equal to Rn, as the mode-n factor U(n) ∈ RIn×Rn at most has rank Rn.
This motivates us to define the multilinear rank of A as the tuple

{R1, R2, R3}, where the rank of A(n) is equal to Rn.

By applying the SVD to A(n) with n = 1, 2, 3, we obtain a special form of the
Tucker decomposition of a given tensor, which is referred to as the higher-order SVD
(HOSVD) [14]. The HOSVD has the following properties: all factor matrices are
columnwise orthogonal and the core tensor has the properties of all-orthogonality and
ordering. As shown in [14], the suboptimality of HOSVD can be measured by the
small singular values of all mode unfoldings. The HOSVD has many applications, such
as, handwritten digit classification [51], multilinear subspace analysis [61, 62, 63, 64],
item recommendation [58], compression of aerodynamic databases [36, 37].

When Rn < rank(A(n)) for one or more n, the decomposition is called the trun-
cated HOSVD (T-HOSVD). The T-HOSVD is not optimal in terms of giving the
best fitting as measured by the Frobenius norm of the difference [15, 16], i.e., the
matrix Eckart–Young–Mirsky theorem does not hold for tensors with N ≥ 3, but it
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is a good starting point for an iterative ALS (alternating least squares) algorithm.
Note that comparison with the T-HOSVD, the sequentially truncated HOSVD [61]
(ST-HOSVD) requires fewer flops and satisfies a better error bound (see [27]). With
respect to the Frobenius norm of tensors, the low multilinear rank approximation of
A can be rewritten as the optimization problem

min ‖A − G ×1 Q1 ×2 Q2 ×3 Q3‖2F ,
subject to G ∈ RR1×R2×R3 ,

Qn ∈ RIn×Rn is columnwise orthogonal,

which is equivalent to the following maximization problem

max
∥∥A×1 Q>1 ×2 Q>2 ×3 Q>3

∥∥2
F
,

subject to Qn ∈ RIn×Rn is columnwise orthogonal.

If Q∗n is a solution of the above maximization problem, then we callA×1P1×2P2×3P3

a low multilinear rank approximation of A, where Pn = Q∗n(Q∗n)>.

2.2. Singular values of random matrices. We first introduce the definition of
the sub-Gaussian random variable. Sub-Gaussian random variables are an important
class of random variables that have strong tail decay properties.

Definition 2.1 (see [54, Definition 3.2]). A real valued random variable X is
called sub-Gaussian if there exists a b > 0 such that for all t > 0 we have E(etX) ≤
eb

2t2/2. A random variable X is centered if E(X) = 0.

We review several results adapted from [34, 49] about random matrices whose
entries are sub-Gaussian random variables. We focus on the case where A is an I ×J
matrix with J > (1 + 1/ ln(I))I. Similar results can be found in [35] for the square
and almost square matrices.

Definition 2.2. Assume that µ ≥ 1, a1 > 0, and a2 > 0. The set A(µ, a1, a2, I, J)
consists of all I×J random matrices A whose entries are the centered i.i.d. real valued
random variables satisfying the following conditions: (a) moments: E(|aij |3) ≤ µ3;

(b) norm: P(‖A‖2 > a1
√
J) ≤ e−a2J ; and (c) variance: E(|aij |2) ≤ 1.

It is shown in [34] that if A is sub-Gaussian, then A ∈ A(µ, a1, a2, I, J). For
a Gaussian matrix with zero mean and unit variance, we have µ = (4/

√
2π)1/3.

Theorems 2.3 and 2.4 are taken from [34, section 2].

Theorem 2.3 (see [34]). Suppose that A ∈ RI×J is sub-Gaussian with I ≤ J ,
µ ≥ 1, and a2 > 0. Then for a1 = 6µ

√
a2 + 4, we have P(‖A‖2 > a1

√
J) ≤ e−a2J .

Theorem 2.3 provides an upper bound for the largest singular value that depends
on the desired probability. Theorem 2.4 is used to bound from the upper below the
smallest singular value of a random sub-Gaussian matrix.

Theorem 2.4 (see [34]). Let µ ≥ 1, a1 > 0, and a2 > 0. Suppose that A ∈
A(µ, a1, a2, I, J) with J > (1 + 1/ ln(I))I. Then, there exist positive constants c1 and
c2 such that P(σI(A) ≤ c1

√
J) ≤ e−c2J .

3. The proposed algorithm and its modification. In this section, by using
the power scheme, random projection, and SVD, we present a randomized algorithm
for the low multilinear rank approximations of tensors, summarized in Algorithm 3.1.
By means of the strategy discussed in [61], a modification of Algorithm 3.1 is sum-
marized in Algorithm 3.2.
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3.1. Framework of the algorithm. By the means of the Frobenius norm of
tensors, Problem 1.1 can be represented as the following problem.

Problem 3.1. Suppose that A ∈ RI1×I2×I3 and ε is a prescribed tolerance. For
given three integers µ1, µ2, and µ3, the goal is to require three columnwise orthogonal
matrices Qn ∈ RIn×µn with µn ≤ In, such that∥∥A−A×1

(
Q1Q

>
1

)
×2

(
Q2Q

>
2

)
×3

(
Q3Q

>
3

)∥∥
F
≤
√

3ε.

Suppose that all the matrices Qn ∈ RIn×µn are the solution for Problem 3.1, As
shown in [10, 50, 61], we have

A−A×1

(
Q1Q

>
1

)
×2

(
Q2Q

>
2

)
×3

(
Q3Q

>
3

)
= A−A×1

(
Q1Q

>
1

)
+A×1

(
Q1Q

>
1

)
−A×1

(
Q1Q

>
1

)
×2

(
Q2Q

>
2

)
+A×1

(
Q1Q

>
1

)
×2

(
Q2Q

>
2

)
−A×1

(
Q1Q

>
1

)
×2

(
Q2Q

>
2

)
×3

(
Q3Q

>
3

)
.

(3.1)

According to (3.1), we have

∥∥A−A×1

(
Q1Q

>
1

)
×2

(
Q2Q

>
2

)
×3

(
Q3Q

>
3

)∥∥2
F
≤

3∑
n=1

∥∥A−A×n (QnQ>n
)∥∥2
F
.

The result relies on the orthogonal projector in the Frobenius norm [61], i.e., for any
n = 1, 2, 3,

‖A‖2F =
∥∥A×n (QnQ>n

)∥∥2
F

+
∥∥A×n (IIn −QnQ>n

)∥∥2
F
,

and the fact that ‖AP‖F ≤ ‖A‖F ‖P‖2 = ‖A‖F with A ∈ RI×J , where the orthogonal
projection P satisfies [22]

P2 = P, P> = P, P ∈ RJ×J .

In order to solve Problem 3.1, for each n, we need to find a columnwise orthogonal
matrix Qn ∈ RIn×µn such that∥∥A−A×n (QnQ>n

)∥∥
F
≤ ε.

Without loss of generality, suppose that n = 1. The first stage of Algorithm 3.1
is to generate another tensor Ã1 as

Ã1 = A×1,2
2,3

(A×1
1 A)×1,2

3,4 (A×1
1 A)×1,2

3,4 · · · ×
1,2
3,4 (A×1

1 A)︸ ︷︷ ︸
K


= A×1,2

2,3 (A×1
1 A)×1,2

2,3 (A×1
1 A)×1,2

2,3 · · · ×
1,2
2,3 (A×1

1 A)︸ ︷︷ ︸
K

= (A×2,3
2,3 A)×1

1 (A×2,3
2,3 A)×1

1 · · · ×1
1 (A×2,3

2,3 A)︸ ︷︷ ︸
K

×1
1A

(3.2)

with a fixed positive integer K. We have the following remarks for (3.2).

Remark 3.1. Suppose that K = 1. For the case of n = 1, there exist two ways to
generate Ã1 as follows:
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(a) We set B = A ×1
1 A ∈ RI2×I3×I2×I3 and the entries of Ã1 = A ×1,2

2,3 B ∈
RI1×I2×I3 are given by

Ã1(i1, i2, i3) =

I2,I3∑
j2,j3=1

ai1j2j3bj2j3i2i3 .

For this way, to compute Ã1 requires O(I5) operations with I1 = I2 = I3 = I.

(b) We set B = A ×2,3
2,3 A ∈ RI1×I1 and the entries of Ã1 = B ×1

1 A ∈ RI1×I2×I3
are given by

Ã1(i1, i2, i3) =

I1∑
j1=1

bi1j1aj1i2i3 .

For this way, to compute Ã1 requires O(I4) operations with I1 = I2 = I3 = I.

Hence, for a given positive integer K ≥ 1, we use the second way to generate Ãn for
all n = 1, 2, 3.

In the second stage, we project the mode-1 unfolding of Ã1 on the Kronecker
product of standard Gaussian matrices. The result matrix captures most of the range
of the mode-1 unfolding of Ã1. The third stage is to compute a basis of this matrix
by the SVD. In this paper, we set T = 10 and K = 1.

Remark 3.2. At step 4 in Algorithm 3.1, the matrices Q and Sn can be construc-
ted from the SVD of Bn,(1) [41, Lemma 3.5].

In Algorithm 3.1, we use the interpretation of O(·) to refer to the class of functions
whose growth is bounded above and below up to a constant. The symbol ∆µn+1(A(n))
is defined as

∆µn+1(A(n)) =

√√√√ In∑
i=µn+1

σi(A(n))2,

where σi(A(n)) is the ith singular value of the mode-n unfolding of A ∈ RI1×I2×I3
with n = 1, 2, 3.

Remark 3.3. Note that ‖A − A ×n (QnQ>n )‖F = ‖A(n) − QnQ>nA(n)‖F with

n = 1, 2, 3. Then from (3.2), the mode-1 unfolding of Ã1 can be represented as

Ã1,(1) = A(1)(A
>
(1)A(1))

K .

The matrix Ã1,(1) has the same singular vectors as the matrix A(1), but its singular
values satisfy

σi(Ã1,(1)) = σi(A(1))
2K+1, i = 1, 2, . . . ,min{I1, I2I3}.

We can obtain the columnwise orthogonal matrix Q1 by directly using [38, Algo-

rithm 4.3] to Ã1,(1). However, as shown in [8], this strategy requires a large amount
of storage for generating the Gaussian random matrix.

Remark 3.4. As shown in Algorithm 3.1, for each n, we use the SVD to find
a columnwise orthogonal matrix Qn from Bn,(1) such that Qn captures most of the
range of Bn,(1). Hence our goal is to approximate the dominant subspace of Bn,(1) with
n = 1, 2, 3. As shown in [40, 69], the approximate dominant subspace of A ∈ RI×J
with I > J can be obtained by

A ≈ QB, B = Q†A ∈ RK×J ,

where Q ∈ RI×K with K < min(I, J) has full column rank.
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Algorithm 3.1 Power scheme + random projection + SVD.

Input: A tensor A ∈ RI1×I2×I3 to decompose, the desired multilinear rank
{µ1, µ2, µ3}, the desired multilinear rank {µ1, µ2, µ3}, L1L2 ≥ µ3 + T , L1L3 ≥
µ2 + T , L2L3 ≥ µ1 + T number of columns to use, and two positive integers K
and T , where T is an oversampling parameter.
Output: Three columnwise orthogonal matrices Qn ∈ RIn×µn

such that ‖A ×1 (Q1Q
>
1 ) ×2 (Q2Q

>
2 ) ×3 (Q3Q

>
3 ) − A‖F ≤∑3

n=1O
(
∆µn+1(A(n))

2K+1 + ∆µn+1(A(n))
)
.

1: Form six real matrices Gn,m ∈ RLm×Im whose entries are i.i.d. Gaussian random
variables of zero mean and unit variance, where m,n = 1, 2, 3 and m 6= n.

2: Compute three product tensors

B1 = Ã1×2 G1,2×3 G1,3, B2 = Ã2×2 G2,1×3 G2,3, B3 = Ã3×2 G3,1×3 G3,2

with

Ã1 = A×1,2
2,3 (A×1

1 A)×1,2
2,3 (A×1

1 A)×1,2
2,3 · · · ×

1,2
2,3 (A×1

1 A)︸ ︷︷ ︸
K

∈ RI1×I2×I3 ,

Ã2 = A×1,2
1,3 (A×2

2 A)×1,2
2,3 (A×2

2 A)×1,2
2,3 · · · ×

1,2
2,3 (A×2

2 A)︸ ︷︷ ︸
K

∈ RI2×I1×I3 ,

Ã3 = A×1,2
1,2 (A×3

3 A)×1,2
2,3 (A×3

3 A)×1,2
2,3 · · · ×

1,2
2,3 (A×3

3 A)︸ ︷︷ ︸
K

∈ RI3×I1×I2 .

(3.3)

3: Form the mode-1 unfolding Bn,(1) of each tensor Bn.
4: For each Bn,(1), find a real In × µn matrix Qn, which is columnwise orthogonal,

such that there exists a real µn ×
∏3
m=1,m6=n Lm matrix Sn for which

‖QnSn −Bn,(1)‖2 ≤ σµn+1(Bn,(1)),

where σµn+1(Bn,(1)) is the (µn + 1)st greatest singular value of Bn,(1).
5: Set Qn := Qn(:, 1 : µn) for all n = 1, 2, 3.

When A = UΣV>, then Q = U(:, 1 : K) and B = (Σ(1 : K, 1 : K)V(:, 1 : K))>.

When AP = Q̃R, then Q = Q̃(:, 1 : K) and B = (RP>)(1 : K, :). When P1AP2 =
LU, then Q = (P>1 L)(:, 1 : K) and B = (UP>2 )(1 : K, :). Hence, we can replace
SVD used in Algorithm 3.1 by any algorithm, which can approximate the dominant
subspace, such as the rank-revealing QR [6, 7, 26, 29, 47, 56] and rank-revealing LU
[46]. This remark is also suitable for Algorithm 3.2.

Hence, when obtaining the error bound of ‖A −A×n (QnQ>n )‖2F , we present an
error bound for Algorithm 3.1, summarized in the following theorem.

Theorem 3.1. Suppose that I1 ≤ I2I3, I2 ≤ I1I3, and I3 ≤ I1I2. Let µ1, L2,
and L3 be integers such that (1+1/ ln(

√
µ1))
√
µ1 < L2, L3 and L2L3 < min(I1, I2I3).

Let µ2, L1, and L3 be integers such that (1 + 1/ ln(
√
µ2))
√
µ2 < L1, L3 and L1L3 <

min(I1, I2I3). Let µ3, L1, and L2 be integers such that (1 + 1/ ln(
√
µ1))
√
µ1 < L1, L2

and L1L2 < min(I3, I1I2). Let
√
µ1,
√
µ2, and

√
µ3 be positive integers. For each

n, we define an, a′n, cnm, and c′nm as in Theorems 2.3 and 2.4 with m = 1, 2, 3 and
m 6= n.
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For a given tensor A ∈ RI1×I2×I3 , columnwise orthogonal matrices Qn are ob-
tained by Algorithm 3.1. Then

∥∥A−A×1

(
Q1Q

>
1

)
×2

(
Q2Q

>
2

)
×3

(
Q3Q

>
3

)∥∥
F

≤ 2
3∑

n=1

(
Cn∆µn+1(A(n))

2K+1 + ∆µn+1(A(n))
)

with probability at least

1−
(
e−c

′
12L2 + e−c

′
13L3 + e−c

′
21L1 + e−c

′
23L3

+ e−c
′
31L1 + e−c

′
32L2 + e−a

′
1I2I3 + e−a

′
2I1I3 + e−a

′
3I1I2

)
,

where C1, C2, and C3 are given by

C1 =
2

σµ1(A(1))2K

√
a21I2I3

c212c
2
13L2L3

,

C2 =
2

σµ2(A(2))2K

√
a22I1I3

c221c
2
23L1L3

,

C3 =
2

σµ3(A(3))2K

√
a23I1I2

c231c
2
32L1L2

.

Here K is a given positive integer.

For the case of n = 1, the assumptions (1 + 1/ ln(
√
µ1))
√
µ1 < L2, L3 and

L2L3 < min(I1, I2I3) in Theorem 3.1 imply min(I1, I2I3) > L2L3 > (1+1/ ln(µ1))µ1.
Hence, we set L2L3 as the smallest positive integer such that L2L3 ≥ µ1 + T and
min(I1, I2I3) > L2L3 > (1 + 1/ ln(µ1))µ1. Let M = max(µ1 + T, (1 + 1/ ln(µ1))µ1).
In practice, we set L2 = ceil(

√
M) and L2 = round(

√
M), where for x ∈ R, ceil(x)

rounds the value of x to the nearest integer towards plus infinity and round(x) rounds
the value of x to the nearest integer.

3.2. Modification of Algorithm 3.1. By the strategy discussed in [61], a
slight modification of Algorithm 3.1 is given in Algorithm 3.2. Based on (3.1) and
the fact ‖AQ‖F ≤ ‖A‖F for A ∈ RI×J and any columnwise orthogonal matrix
Q ∈ RJ×R (R ≤ J), the temporary tensor C in Algorithm 3.2 is updated for each n.

Remark 3.5. In Algorithms 3.1 and 3.2, we only need the µn leading left singular
vectors of Bn,(1) with n = 1, 2, 3.

Note that the main difference between Algorithms 3.1 and 3.2 is that the tem-
porary tensor C is updated after each n. We illustrate the difference via an example.
The test tensor A ∈ RI×I×I is given in the Tucker form: A = S ×1 G1 ×2 G2 ×3 G3,
where the entries of S ∈ R100×100×100 and Gn ∈ R400×100 (n = 1, 2, 3) are i.i.d. Gauss-
ian variables with zero mean and unit variance. Figure 1 shows that Algorithm 3.2 is
more effective than Algorithm 3.1 for computing low multilinear rank approximations.
Hence, Algorithm 3.2 is denoted by Tucker-pSVD.
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Algorithm 3.2 A slight modification of Algorithm 3.1.

Input: A tensor A ∈ RI1×I2×I3 to decompose, the desired multilinear rank
{µ1, µ2, µ3}, the desired multilinear rank {µ1, µ2, µ3}, L1L2 ≥ µ3 + T , L1L3 ≥
µ2 + T , L2L3 ≥ µ1 + T number of columns to use, and two positive integers K
and T , where T is an oversampling parameter.
Output: Three columnwise orthogonal matrices Qn ∈ RIn×µn such that
‖A ×1 (Q1Q

>
1 ) ×2 (Q2Q

>
2 ) ×3 (Q3Q

>
3 ) − A‖F ≤

∑3
n=1O(∆µn+1(A(n))

2K+1 +
∆µn+1(A(n))).

1: Set the temporary tensor: C = A.
2: for n = 1, 2, 3 do
3: Form two real matrices Gn,m ∈ RLm×Im whose entries are i.i.d. Gaussian ran-

dom variables of zero mean and unit variance, where m = 1, 2, 3 and m 6= n.
4: Compute the product tensor

Bn ∈
{
Ã1 ×2 G1,2 ×3 G1,3, Ã2 ×2 G2,1 ×3 G2,3, Ã3 ×2 G3,1 ×3 G3,2

}
with

(3.4) Ãn = C ×1,2
{1,2,3}−n (C ×nn C)×

1,2
2,3 (C ×nn C)×

1,2
2,3 · · · ×

1,2
2,3 (C ×nn C)︸ ︷︷ ︸

K

.

5: Form the mode-1 unfolding Bn,(1) of each tensor Bn.
6: For each Bn,(1), find a real In×µn matrix Qn, which is columnwise orthogonal,

such that there exists a real µn ×
∏3
m=1,m6=n Lm matrix Sn for which

‖QnSn −Bn,(1)‖2 ≤ σµn+1(Bn,(1)),

where σµn+1(Bn,(1)) is the (µn + 1)st greatest singular value of Bn,(1).

7: Set In = µn and compute C = C ×n Q>n .
8: end for

0 10 20 30 40 50 60 70 80 90 100

P (number of indices)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
LN

E

Algorithm 3.2
Algorithm 3.1

0 10 20 30 40 50 60 70 80 90 100

P (number of indices)

6

8

10

12

14

16

18

20

22

24

26

C
P

U
 ti

m
e

Fig. 1. Numerical simulation results of applying Algorithms 3.1 and 3.2 to the tensor A with
P = 5, 10, . . . , 100 and I = 400. Note that RLNE in the left part is defined in (5.1).
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3.3. Computational complexity analysis. In this paper, for clarity, we as-
sume that I1 = I2 = I3 = I, L1 = L2 = L3 = L, and µ1 = µ2 = µ3 = µ in
complexity estimates, where µn is the number of columns of Qn. We can also assume
that I1 ∼ I2 ∼ I3 ∼ I, L1 ∼ L2 ∼ L3 ∼ L, and µ1 ∼ µ2 ∼ µ3 ∼ µ in complexity
estimates [23, p. A2], where In ∼ I means In = αnI for some constant αn.

From part (b) in Remark 3.1, to compute the number of floating points operations
in Algorithm 3.1, we evaluate the complexity of each step:

S1: Generating six standard Gaussian matrices requires 6IL operations.
S2: For all n = 1, 2, 3, computing three product tensors Bn needs 6KI4 + 6(K −

1)I3 + 6I3L+ 12I2L2 operations.1

S3: Forming the mode-n unfolding Bn,(1) requires O(IL2) operations.
S4: Computing Qn requires O(IL2µ) operations with n = 1, 2, 3.

By summing up the complexities of all the steps above, then Algorithm 3.1 requires

6[KI4 + (K − 1)I3 + I3L+ 2I2L2 + IL] +O(IL2 + IL2µ)

operations for the tensor A. Thus, Algorithm 3.1 requires O(KI4) operations for the
low multilinear rank approximation of A, where µ ≤ L2 + K < I and K > 0 is the
oversampling parameter.

Remark 3.6. Note that for a given matrix A ∈ RI×I , computing AA> needs
I(I + 1)(2I − 1)/2 operations. Then in Algorithm 3.1, computing Bn needs

3K
I(I + 1)

2
(2I2 − 1) + 3(K − 1)

I(I + 1)

2
(2I − 1) + 6(I3L+ 2I2L2)

operations.

Similarly to Algorithm 3.1, we can also analyze the computational complexity
of Algorithm 3.2. In order to compute the number of floating points operations in
Algorithm 3.2, we set p1 = 1, p2 = 2, and p3 = 3.

1. For the case of n = 1, generating two standard Gaussian matrices requires 2IL
operations, and computing B1 and C needs 2KI4+2(K−1)I3+2I3L+4I2L2

and 2I3µ operations, respectively.2

2. For the case of n = 2, generating two standard Gaussian matrices requires
I(L+ µ) operations, and computing B2 and C needs 2KI3µ+ 2(K − 1)I3 +
2I2Lµ+ 2I2L2 + 2IL2µ and 2I2µ2 operations, respectively.3

3. For the case of n = 3, generating two standard Gaussian matrices requires
2µL operations, and computing B3 needs 2KI2µ2 + 2(K − 1)I3 + 2IL2µ +
2ILµ2 + 2I2L2 operations.4

Note that for each n, the number of entries of Bn in Algorithm 3.2 is IL2; then, for
each n, we have

(i) forming the mode-n unfolding Bn,(1) requires O(IL2) operations;
(ii) for each n = 1, 2, 3, computing Qn requires O(IL2µ) operations.

1There exists another way to generate Bn: for all n = 1, 2, 3, it needs 6(K+1)I4+6(K−1)I3 and

6I3L operations to compute three temporary tensors Ãn and three product tensors Bn, respectively.
2There exists another way to compute B1: it needs (2K + 2)I4 + 2(K − 1)I3 and 2I3L+ 2I2L2

operations to compute Ã1 and B1, respectively.
3There exists another way to compute B2: computing Ã2, and B2 needs (2K+2)I3µ+2(K−1)I3

and 2I2Lµ+ 2I2L2 operations, respectively.
4There exists another way to compute B3: computing Ã3 and B3 needs (2K+2)I2µ2+2(K−1)I3

and 2LIµ2 + 2IL2µ operations, respectively.
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By summing up the complexities of all the steps above, Algorithm 3.2 then re-
quires

2K(I4 + I3µ+ I2µ2) + 6(K − 1)I3 + (3I + 3µ)L

+ 2(I3L+ I3µ+ 4I2L2 + I2µ2 + I2Lµ+ 2IL2µ+ ILµ2) +O(IL2 + IL2µ)

operations for the tensor A. Thus, Algorithm 3.2 requires O(KI4) operations for the
low multilinear rank approximation of A, where µ ≤ L2 + T < I and T > 0 is the
oversampling parameter.

Following from the above discussion, Algorithm 3.2 is faster than Algorithm 3.1
for computing the low multilinear rank approximation of a tensor under the same
conditions.

3.4. Comparison with existing randomized algorithms. With the case of
either given multilinear rank or given RLNE, given in (5.1), Che and Wei [8] presented
a randomized algorithm for the low multilinear rank approximation of A ∈ RI1×I2×I3 .

Suppose that the multlilinear rank of A is given as {µ1, µ2, µ3}, then [8, Algo-
rithm 3.2] can be represented as follows:

1: Set L′1 ≥ µ1 + K, L′2 ≥ µ2 + K, and L′3 ≥ µ3 + K, where K is an oversampling
parameter.

2: Set the temporary tensor: C = A.
3: for n = 1, 2, 3 do
4: Compute Bn,(n) = A(n)Ω(n), where Ω(n) = Ω′1� · · ·�Ω′n−1�Ω′n+1� · · ·�Ω′3

and Ω′m ∈ RIm×L′
n is a standard Gaussian matrix with m 6= n and m = 1, 2, 3.

5: Compute Qn as a columnwise orthogonal basis of B(n) by using SVD and let
Qn = Qn(:, 1 : µn).

6: Set C = C ×Q>n and let In = µn.
7: end for

We also list the randomized Tucker decomposition [72, Algorithm 2] as follows:

1: Set L′1 ≥ µ1 + K, L′2 ≥ µ2 + K, and L′3 ≥ µ3 + K, where K is an oversampling
parameter.

2: Set the temporary tensor: C = A.
3: for n = 1, 2, 3 do
4: Compute Bn,(n) = A(n)Ω(n), where Ω(n) is an (

∏3
k 6=n Ik)-by-L′n standard

Gaussian matrix.
5: Compute Qn as a columnwise orthogonal basis of B(n) by using the SVD and

let Qn = Qn(:, 1 : µn).
6: Set C = C ×Q>n and let In = µn.
7: end for

Note that in [8, 72], for each n, the unpivoted QR factorization [22] is used to
obtain a columnwise orthogonal basis of B(n). Tucker-SVD in [10] can be rewritten
as follows:

1: Set L2L3 ≥ µ1 + K, L1L3 ≥ µ2 + K, and L1L2 ≥ µ3 + K, where K is an
oversampling parameter.

2: Set the temporary tensor: C = A.
3: for n = 1, 2, 3 do
4: Compute Bn,(n) = A(n)Ω(n), where Ω(n) = Ω′1⊗ · · ·⊗Ω′n−1×Ω′n+1⊗ · · ·⊗Ω′3

and Ω′m ∈ RIm×Lm is a standard Gaussian matrix with m 6= n and m = 1, 2, 3.
5: Compute Qn as a columnwise orthogonal basis of B(n) by using SVD and let

Qn = Qn(:, 1 : µn).
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Fig. 2. Comparison of the computation of Bn,(n) in Tucker-SVD, [8, Algorithm 3.2] and [72,
Algorithm 2] with P = 10, 20, . . . , 200. Process A, Process B, and Process C are used in Tucker-
SVD, [8, Algorithm 3.2] and [72, Algorithm 2], respectively. Hint: left for n = 1, middle for n = 2,
and right for n = 3.

6: Set C = C ×Q>n and let In = µn.
7: end for

Tucker-pSVD, the same as Algorithm 3.2, is rewritten as follows:

1: Set L2L3 ≥ µ1 + K, L1L3 ≥ µ2 + K and L1L2 ≥ µ3 + K, where K is an
oversampling parameter.

2: Set the temporary tensor: C = A.
3: for n = 1, 2, 3 do
4: Compute Bn,(1) = Ãn,(1)Ω(n), where Ω(n) = Ω′1⊗· · ·⊗Ω′n−1×Ω′n+1⊗· · ·⊗Ω′3

and Ω′m ∈ RIm×Lm is a standard Gaussian matrix with m 6= n and m = 1, 2, 3.

Here Ãn is given in (3.4).
5: Compute Qn as a columnwise orthogonal basis of B(n) by using SVD and let

Qn = Qn(:, 1 : µn).
6: Set C = C ×Q>n and let In = µn.
7: end for

As shown in Remark 3.3, when the error of Tucker-SVD is large for the tensor
whose mode-n singular value delays slowly, Tucker-pSVD has been proposed to relieve
this weakness. The main difference betweeen Tucker-SVD, [8, Algorithm 3.2] and [72,
Algorithm 2] is to generate the matrix Bn,(n) for each n. For all n, generating six
standard Gaussian matrices requires 3I(L+µ) operations for Tucker-SVD, 3I(L′+µ)
operations for [8, Algorithm 3.2], and I2L′+ IL′µ+L′µ2 for [72, Algorithm 2], where
we assume that L′1 = L′2 = L′3 = L′ > L.

For Tucker-SVD, [8, Algorithm 3.2] and [72, Algorithm 2], CPU times for com-
puting Bn,(n) with I1 = I2 = I3 = 500 and µ1 = µ2 = µ3 = P are shown in Figure 2.
Here the entries ofA ∈ R500×500×500 are Gaussian random variables with unit variance
and zero mean.

4. Proof of the main results. In this section, we provide the proof for our
main theorem.

4.1. Basic lemmas. In this section, we obtain some prerequisite results for
proving Theorem 3.1.
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Lemma 4.1 (see [22, 67]). Suppose that A ∈ RI×J such that A is of full column
rank, with I ≥ J . Then ∥∥A†∥∥

2
=
∥∥(A>A)−1A>

∥∥
2

= 1/σJ ,

where σJ is the least (that is, the Jth greatest) singular value of A.

Lemma 4.2 (see [10, Lemma 5.2]). Let I, J , and K be three positive integers
such that K < J < I. Suppose that Q ∈ RI×K is columnwise orthogonal. For a given
A ∈ RI×J , we have

σmax(Q>A) ≤ σmax(A), σmin(Q>A) ≥ σmin(A).

For given A ∈ RI×J and G ∈ RJ×K , the following lemma states the singular value
of the product AG is at most ‖G‖2 times greater than the corresponding singular
values of A.

Lemma 4.3 (see [10, Corollary 5.1]). Suppose that A ∈ RI×J and G ∈ RJ×S
with S ≤ min(I, J). Then for all k = 1, 2, . . . ,min(I, J, S)− 1,min(I, J, S), we have

S∑
i=k

σi(AG)2 ≤ ‖G‖22
min(I,J)∑
j=k

σj(A)2.

The following classical lemma provides an approximation QS to A ∈ RI×J via a
columnwise orthogonal matrix Q ∈ RI×R and S ∈ RR×J .

Lemma 4.4 (see [10, Lemma 5.3]). Suppose that R, I, and J are positive integers
with R < J and J ≤ I. Let A ∈ RI×J . Then there exist a columnwise orthogonal
matrix Q ∈ RI×R and S ∈ RR×J such that

‖QS−A‖F ≤ ∆R+1(A)

with ∆R+1(A) := (
∑J
i=R+1 σi(A)2)1/2, where σi(A) is the ith greatest singular value

of A for all i = 1, 2, . . . , J .

Without loss of generality, we assume that n = 1. The following lemma states that
the product A×1 (Q1Q

>
1 ) is a good approximation to A ∈ RI1×I2×I3 , provided that

there exist matrices Gm ∈ RLm×Im (m = 2, 3) and R1 ∈ Rµ1×L2L3 such that (a) Q1 is

columnwise orthogonal; (b) Q1R1 is a good approximation to (Ã1×2G2×3G3)(1), and

(c) there exist a matrix F ∈ RL2L3×I2I3 such that ‖F‖2 is medium, and Ã1,(1)(G3 ⊗
G2)>F is a good approximation to A(1), where Ã1 ∈ RI1×I2×I3 is given in (3.2).

Lemma 4.5. Suppose that A ∈ RI1×I2×I3 , Q1 ∈ RI1×µ1 is columnwise orthogonal
with µ1 ≤ I1, S1 is a real µ1×L2L3 matrix, F is a real L2L3× I2I3 matrix, and Gm

is a real Lm × Im matrix with m = 2, 3. Then∥∥A−A×1 (Q1Q
>
1 )
∥∥2
F
≤ 2

∥∥∥Ã1,(1)(G3 ⊗G2)>F−A(1)

∥∥∥2
F

+ 2‖F‖22
∥∥∥S1 ×1 Q1 − Ã1 ×2 G2 ×3 G3

∥∥∥2
F
,

(4.1)

where Ã1 is given in (3.2), S1 ∈ Rµ1×L2×L3 is given by S1 = reshape(S1, [µ1, L2, L3]).
Here reshape(·) is a MATLAB function.
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Proof. The proof is straightforward, but tedious, as follows. By using the triangle
inequality, we have

∥∥A−A×1

(
Q1Q

>
1

)∥∥2
F
≤
∥∥∥(Q1Q

>
1

)
Ã1,(1)(G3 ⊗G2)>F−

(
Q1Q

>
1

)
A(1)

∥∥∥2
F

+
∥∥∥(Q1Q

>
1

)
Ã1,(1)(G3 ⊗G2)>F− Ã1,(1)(G3 ⊗G2)>F

∥∥∥2
F

+
∥∥∥Ã1,(1)(G3 ⊗G2)>F−A(1)

∥∥∥2
F
.

(4.2)

For the first term in the right-hand side of (4.2), we have

(4.3)
∥∥∥(Q1Q

>
1

)
Ã1,(1)(G3 ⊗G2)>F−

(
Q1Q

>
1

)
A(1)

∥∥∥2
F

≤
∥∥∥Ã1,(1)(G3 ⊗G2)>F−A(1)

∥∥∥2
F
‖Q1Q

>
1 ‖22.

Since ‖Q1Q
>
1 ‖2 = 1, then∥∥∥(Q1Q

>
1

)
Ã1,(1)(G3 ⊗G2)>F−

(
Q1Q

>
1

)
A(1)

∥∥∥2
F
≤
∥∥∥Ã1,(1)(G3 ⊗G2)>F−A(1)

∥∥∥2
F
.

Now, we provide a bound for the second term in the right-hand side of (4.2). Clearly,
we have ∥∥∥(Q1Q

>
1

)
Ã1,(1)(G3 ⊗G2)>F− Ã1,(1)(G3 ⊗G2)>F

∥∥∥2
F

≤
∥∥∥(Q1Q

>
1

)
Ã1,(1)(G3 ⊗G2)> − Ã1,(1)(G3 ⊗G2)>

∥∥∥2
F
‖F‖22.

It follows from the triangle inequality that∥∥∥(Q1Q
>
1

)
Ã1,(1)(G3 ⊗G2)> − Ã1,(1)(G3 ⊗G2)>

∥∥∥2
F

≤
∥∥∥(Q1Q

>
1

)
Ã1,(1)(G3 ⊗G2)> −Q1Q

>
1 Q1S1

∥∥∥2
F

+
∥∥Q1Q

>
1 Q1S1 −Q1S1

∥∥2
F

+
∥∥∥Q1S1 − Ã1,(1)(G3 ⊗G2)>

∥∥∥2
F
.

Since Q>1 Q1 = Iµ1
, then ∥∥(Q1Q

>
1

)
Q1S1 −Q1S1

∥∥2
F

= 0.

Since ‖Q1Q
>
1 ‖2 = 1, then∥∥∥(Q1Q

>
1

)
Ã1,(1)(G3 ⊗G2)> −Q1Q

>
1 Q1S1

∥∥∥2
F
≤
∥∥∥Q1S1 − Ã1,(1)(G3 ⊗G2)>

∥∥∥2
F
.

Hence we have∥∥∥(Q1Q
>
1

)
Ã1,(1)(G3 ⊗G2)>F− Ã1,(1)(G3 ⊗G2)>F

∥∥∥2
F

≤ 2‖F‖22
∥∥∥Q1S1 − Ã1,(1)(G3 ⊗G2)>

∥∥∥2
F
.

(4.4)

Combining (4.2), (4.3), and (4.4) yields (4.1).
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Lemma 4.6 (see [54, Lemma 4.6]). Let A be a real I × J matrix with I ≤ J
and G be a real J × L matrix whose entries are i.i.d. Gaussian random variables
with zero mean and unit variance. Let R and L be integers such that L < I and
L > (1 + 1/ ln(R))R. We define a1, a2, c1, and c2 as in Theorems 2.3 and 2.4. Then,
there exists a matrix F ∈ RL×J such that

‖AGF−A‖2 ≤

√
a21J

c21L
+ 1σR+1(A),

and

‖F‖2 ≤
1

c1
√
L

with probability at least 1− e−c2L − e−a2J .

When N = 2, Algorithm 3.1 is similar to the randomized algorithm in [48] for
the low rank approximation of matrices that produces accuracy very close to the best
possible, for matrices with arbitrary sizes.

The following lemma states that the product AQQ> is a good approximation to
A ∈ RI×J , provided that there exist matrices G ∈ RL×I and R ∈ RR×L such that:
(a) Q ∈ RI×R is columnwise orthogonal, (b) QR is a good approximation to (GB)>,
and (c) there exists a matrix F ∈ RI×L such that ‖F‖2 is medium, and FGB is a
good approximation to A, where B = (AA>)KA with a given positive integer K.

Lemma 4.7 (see [48, Lemma 3.1]). Suppose that K, R, L, I, and J are positive
integers with R ≤ L ≤ I ≤ J . Suppose further that A is a real I × J matrix, Q is a
real J ×R matrix whose columns are columnwise orthogonal, R is a real R×L upper
triangular matrix, F is a real I × L matrix, and G is a real L× I matrix. Then for
B = (AA>)KA, we have

(4.5)
∥∥A−AQQ>

∥∥
2

= 2‖FGB−A‖2 + 2‖F‖2
∥∥QR− (GB)>

∥∥
2
.

Rokhlin, Szlam, and Tygert [48] considered estimating the second part in the
right-hand side of (4.5). In order to estimate the first part in the right-hand side of
(4.5), we need the following theorem, which is similar to Lemma 4.6.

Theorem 4.8. Let A be a real I × J matrix with I ≤ J and G be a real J × L
matrix whose entries are i.i.d. Gaussian random variables with zero mean and unit
variance. Let R and L be integers such that L < I and L > (1 + 1/ ln(R))R. We
define a1, a2, c1, and c2 as in Theorems 2.3 and 2.4. Then, there exists a matrix
F ∈ RL×J such that∥∥A(A>A)KGF−A

∥∥
2
≤ ∆R+1(A)2K+1 a1

√
J

c1σ2K
R

√
L

+ ∆R+1(A),

and

‖F‖2 ≤
1

c1σ2K
R

√
L

with probability at least 1− e−c2L − e−a2J , where K is a given positive integer.

Remark 4.1. Theorem 4.8 is similar to [48, Lemma 3.2], in which one estimates
the upper bounds of ‖A(A>A)KGF−A‖2 and ‖F‖2 by the highly probable bounds
on the singular values of a rectangular matrix whose entries are i.i.d. Gaussian random
variables of zero mean and unit variance [11, 32].



LOW MULTILINEAR RANK APPROXIMATIONS OF TENSORS 621

Proof. We begin by the application of the SVD to A such that A = UΣV>,
where U ∈ RI×J is columnwise orthogonal, Σ ∈ RJ×J is diagonal with nonnegative
entries and, V ∈ RJ×J is orthogonal. Hence, we have

(4.6) A(A>A)K = UΣ2K+1V>.

Assume that given V> and G, suppose that

V>G =

(
H
R

)
,

where H is an R × L matrix and R is a (J − R) × L matrix. Since G is a stan-
dard Gaussian matrix, and V is an orthogonal matrix, then V>G is also a standard
Gaussian matrix. Therefore, H and R are also standard Gaussian matrices. Define
F = PV>, where P is a matrix of size L× J such that

P =
(
H†Σ−2K1 0L×(J−R)

)
, Σ1 = Σ(1 : R, 1 : R).

By computing ‖F‖2 using Theorem 2.4, we get

‖F‖2 =
∥∥PV>

∥∥
2

=
∥∥H†Σ−2K1

∥∥
2
≤
∥∥H†∥∥

2

σ2K
R

=
1

σ2K
R

1

σmin(H)
≤ 1

c1
√
Lσ2K

R

with probability not less than 1− e−c2L. Now, we can bound ‖A(A>A)KGF−A‖2.
By (4.6), we get

(4.7) A(A>A)KGF−A = UΣ

(
Σ2K

(
H
R

)(
H†Σ−2K1 0L×(J−R)

)
− IJ

)
V>.

We define Σ2 to be the (J −R)× (J −R) lower-right block of Σ. Then

Σ

(
Σ2K

(
H
R

)(
H†Σ−2K1 0L×(J−R)

)
− IJ

)
= Σ

(
Σ2K

1 0R×(J−R)

0(J−R)×R Σ2K
2

)(
0R×R 0R×(J−R)

RH†Σ−2K1 −IJ−R

)
=

(
0R×R 0R×(J−R)

Σ2K+1
2 RH†Σ−2K1 −Σ2

)
.

The norm of the last term is:∥∥∥∥( 0R×R 0R×(J−R)

Σ2K+1
2 RH†Σ−2K1 −Σ2

)∥∥∥∥
F

≤
∥∥Σ2K+1

2 RH†Σ−2K1

∥∥
F

+ ‖Σ2‖F .

Moreover, ∥∥Σ2K+1
2 RH†Σ−2K1

∥∥
F
≤
∥∥Σ−2K1

∥∥
2

∥∥H†∥∥
2
‖R‖2

∥∥Σ2K+1
2

∥∥
F

≤
∥∥Σ−11

∥∥2K
2

∥∥H†∥∥
2
‖R‖2‖Σ2‖2K+1

F .
(4.8)

Therefore, by using (4.7), (4.8), and the fact that ‖Σ2‖F = ∆R+1(A), we get∥∥A(A>A)KGF−A
∥∥
F
≤ ‖Σ2‖2K+1

F ‖R‖2
∥∥H†∥∥

2
σ−2KR + ‖Σ2‖F

= ∆R+1(A)2K+1‖R‖2
∥∥H†∥∥

2
σ−2KR + ∆R+1(A).

(4.9)
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We also know that
‖R‖2 ≤

∥∥V>G
∥∥
2

= ‖G‖2 ≤ a1
√
J

with probability not less than 1−e−a2L. Combining (4.9) with the fact that ‖H†‖2 ≤
1

c1
√
L

and ‖R‖2 ≤ a1
√
J gives

∥∥A(A>A)KGF−A
∥∥
F

=
a1
√
J

c1σ2K
R

√
L

∆R+1(A)2K+1 + ∆R+1(A).

Hence this theorem is completely proved.

We now estimate the first term in the right-hand side of (4.1), which is given in
the following theorem.

Theorem 4.9. Suppose that A ∈ RI1×I2×I3 and K is a given positive integer. Let
Gm be a real Lm×Im matrix whose entries are i.i.d. Gaussian random variables with
zero mean and unit variance for m = 2, 3. Let µ1, L2, and L3 be integers such that
(1 + 1/ ln(

√
µ1))
√
µ1 < L2, L3 and L2L3 < min(I1, I2I3). We define a1, a′1, c12, c′12,

c13, and c′13 as in Theorems 2.3 and 2.4. Then there exist a matrix F ∈ RL2L3×I2I3

such that∥∥∥Ã1,(1)(G3 ⊗G2)>F−A(1)

∥∥∥
F

≤ 1

σµ1
(A(1))2K

√
a21I2I3

c212c
2
13L2L3

∆µ1+1(A(1))
2K+1 + ∆µ1+1(A(1)),

and

‖F‖2 ≤
1

σµ1
(A(1))2K

1

c12c13
√
L2L3

with probability at least 1− e−c′12L2 − e−c′13L3 − e−a′1I2I3 , where Ã1 is given in (3.2).

Proof. Note that Ã1,(1) = A(1)(A
>
(1)A(1))

K . Suppose that A(1) = UΣV>, where

U ∈ RI1×I1 is orthogonal, Σ ∈ RI1×I1 is diagonal with nonnegative entries, and
V ∈ RI2I3×I1 is columnwise orthogonal. Then Ã1,(1) = UΣ2K+1V>. Assume that

given V> and G3 ⊗G2, suppose that

V>(G3 ⊗G2) =

(
H
R

)
,

where H is a µ1 ×L2L3 matrix and R is an (I1 − µ1)×L2L3 matrix. Since G3 ⊗G2

is a random sub-Gaussian matrix, and V is a columnwise orthogonal matrix, then
V>(G3⊗G2) is also a random sub-Gaussian matrix. Therefore, H and R are random
sub-Gaussian matrices. Define F3⊗F2 = PV>, where P is a matrix of size L2L3×I1
such that

P =
(
H†Σ−2K1 0L2L3×(I1−R)

)
, Σ1 = Σ(1 : µ1, 1 : µ1).

According to Lemma 4.2 and Theorem 2.3, we get

‖F‖2 =
∥∥H†Σ−2K1

∥∥
2
≤

∥∥H†∥∥
2

σµ1
(A(1))2K

≤ 1

σµ1(A(1))2K
1

σmin(H)
≤ 1

σµ1(A(1))2K
1√

c212c
2
13L2L3

with probability not less than 1− e−c′12L2 − e−c′13L3 .
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Now, we can bound ‖Ã1,(1)(G3 ⊗G2)>F−A(1)‖F . By using (4.8), we get

Ã1,(1)(G3 ⊗G2)>F−A(1)

= UΣ

(
Σ2K

(
H
R

)(
H†Σ−2K1 0L2L3×(I1−µ1)

)
− II1

)
V>.

We define Σ2 to be the (I1 − µ1)× (I1 − µ1) lower-right block of Σ. Then

Σ

(
Σ2K

(
H
R

)(
H†Σ−2K1 0L2L3×(I1−µ1)

)
− II1

)
= Σ

(
Σ2K

1 0µ1×(I1−µ1)

0(I1−µ1)×µ1
Σ2K

2

)(
0µ1×µ1 0µ1×(I1−µ1)

RH†Σ−2K1 −II1−µ1

)
=

(
0µ1×µ1 0µ1×(I1−µ1)

Σ2K+1
2 RH†Σ−2K1 −Σ2

)
.

The norm of the last term is

(4.10)

∥∥∥∥( 0µ1×µ1
0µ1×(I1−µ1)

Σ2K+1
2 RH†Σ−2K1 −Σ2

)∥∥∥∥
F

≤
∥∥Σ2K+1

2 RH†Σ−2K1

∥∥
F

+ ‖Σ2‖F .

Moreover, ∥∥Σ2K+1
2 RH†Σ−2K1

∥∥
F
≤
∥∥Σ−2K1

∥∥
2

∥∥H†∥∥
2
‖R‖2‖Σ2K+1

2 ‖F

≤
∥∥Σ−11

∥∥2K
2

∥∥H†∥∥
2
‖R‖2‖Σ2‖2K+1

F .
(4.11)

Therefore, by using (4.10), (4.11), and the fact that ‖Σ2‖F = ∆µ1+1(A), we get∥∥∥Ã1,(1)(G3 ⊗G2)>F−A(1)

∥∥∥
F

≤ ‖Σ2‖2K+1
F ‖R‖2

∥∥H†∥∥
2
σ−2Kµ1

+ ‖Σ2‖F
= ∆µ1+1(A)2K+1‖R‖2

∥∥H†∥∥
2
σ−2Kµ1

+ ∆µ1+1(A)

≤ ∆µ1+1(A)2K+1‖G3 ⊗G2‖2‖H†‖2σ−2Kµ1
+ ∆µ1+1(A).

By Theorem 2.3, we know

‖G3 ⊗G2‖2 ≤ a1
√
I2I3

with probability not less than 1−e−a′1I2I3 . Hence this theorem is completely proved.

4.2. Proving Theorem 3.1. In this section, we assume that Q1 in Lemma 4.5
is derived from Algorithm 3.1. The main goal is to estimate the upper bound of
‖A − A ×1 (Q1Q

>
1 )‖F . As shown in Lemma 4.5 and Theorem 4.9, we need only to

give an upper bound for the second part in the right-hand side of (4.1).
For a given A ∈ RI×J , suppose that the entries of G ∈ RJ×L are i.i.d. Gaussian

variables of zero mean and unit variance, the following theorem provides a highly
probable upper bound on the singular values of the product AG in term of the
singular values of A.

Theorem 4.10 (see [10, Theorem 5.2]). Let A be a real I×J matrix with I ≤ J .
Let R and L be integers such that R < L < I. Suppose that µ ≥ 1, and the entries of
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G ∈ RJ×R are i.i.d. sub-Gaussian random variables with zero mean and unit variance.
We define a1 and a2 as in Theorems 2.3 and 2.4. Then

∆R+1(AG) ≤ a1
√
J∆R+1(A)

with probability at least 1− e−a2J , where a1 = 6µ
√
a2 + 4.

Corollary 4.11. Suppose that A ∈ RI1×I2×I3 and K is a given positive inte-
ger. Let Gm be a real Lm × Im matrix whose entries are i.i.d. Gaussian random
variables with zero mean and unit variance for m = 2, 3. We define a1 and a2 as in
Theorems 2.3 and 2.4. Then

∆µ1+1(Ã1,(1)(G3 ⊗G2)>) ≤ a1
√
I2I3∆µ1+1(A(1))

2K+1

with probability at least 1− e−a2L2L3 , where a1 = 6µ
√
a2 + 4 and Ã1 is given in (3.2).

Proof. Applying Theorem 4.10 and combining Theorem 2.3, it is easy to prove
this corollary.

Combining Theorem 4.9 and Corollary 4.11, it is easy to obtain the following
theorem.

Theorem 4.12. Suppose that K is a given positive integer. Let Gm be a real Lm×
Im matrix whose entries are i.i.d. Gaussian random variables with zero mean and unit
variance for m = 2, 3. Let µ1, L2, and L3 be integers such that
(1 + 1/ ln(

√
µ1))
√
µ1 < L2, L3, and L2L3 < min(I1, I2I3). Let

√
µ1 be a positive

integer. We define a1, a2, c12, c′12, c13, and c′13 as in Theorems 2.3 and 2.4.
For a given A ∈ RI1×I2×I3 Q1 is derived from Algorithm 3.1 with n = 1. Then∥∥A−A×1

(
Q1Q

>
1

)∥∥
F
≤ 2C1∆µ1+1(A(1))

2K+1 + 2∆µ1+1(A(1))

with probability at least 1 − e−c′12L2 − e−c′13L3 − e−a′1I2I3 , where the expression of C1

is given by

C1 =
2

σµ1
(A(1))2K

√
a21I2I3

c212c
2
13L2L3

.

Now, we give a rigorous proof for Theorem 3.1 based on the above discussions.

Proof. Theorem 3.1 is derived from (3.1) and Theorem 4.12.

5. Numerical examples. In this section, computer programs are developed us-
ing numerical computation software MATLAB and the MATLAB Tensor Toolbox [2]
and the calculations are implemented on a laptop with Intel Core i5-4200M CPU (2.50
GHz) and 8.00 GB RAM. Floating point numbers in each example have four deci-
mal digits. We use these three functions “ttv,” “ttm,” and “ttt” in [2] to implement
the tensor-vector product, the tensor-matrix product, and the tensor-tensor product,
respectively.

For clarity, we assume that I1 = I2 = I3 := I and L1 = L2 = L3 := L. The
order of computing factor matrices is {1, 2, 3}. In this section, we will compare our
algorithms with the existing numerical algorithms for computing the low multilinear
rank approximation of testing tensors A ∈ RI×I×I under the case of different P ’s
with fixed I.

The relative error for the low multilinear rank approximation of A ∈ RI×I×I is
defined as

(5.1) RLNE =
∥∥∥A− Â∥∥∥

F
/‖A‖F ,
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where Â = A×1 (S1S
†
1)×2 (S2S

†
2)×3 (S3S

†
3) and the matrices Sn ∈ RI×Rn are derived

form the desired numerical algorithms.
In this section, we compare Algorithm 3.2 with the existing algorithms for com-

puting low multilinear rank approximations of tensors via several experiments using
both synthetic and real-world data. These algorithms are given by the following:

• Tucker ALS: higher-order orthogonal iteration [2] (the maximum number of
iterations is set to 50, the order to loop through dimensions is {1, 2, 3}, the en-
tries of initial values are i.i.d. standard Gaussian variables, and the tolerance
on difference in fit is set to 0.0001);
• mlsvd: truncated multilinear SVD [61] (the order to loop through dimensions

is {1, 2, 3} and a faster but possibly less accurate eigenvalue decomposition is
used to compute the factor matrices);
• lmlra aca: low multilinear rank approximation by adaptive cross approxima-

tion [5, 66] (the relative singular value tolerance in determining the factor
matrices is set to 1e–12 and the factor matrices are columnwise orthogonal);

• Adap-Tucker: low multilinear rank approximation by the adaptive random-
ized algorithm [8];
• ran-Tucker: the randomized Tucker decomposition [72];
• mlsvd rsi: truncated multilinear SVD [61] by a randomized SVD algorithm

based on randomized subspace iteration [28] (the oversampling parameter is
10, the number of subspace iterations to be performed is 2, and we remove
the parts of the factor matrices and core tensor corresponding due to the
oversampling);
• Tucker-SVD: low multilinear rank approximation by combining random pro-

jection and the SVD [10].

Remark 5.1. In this section, we set MATLAB maxNumCompThreads to 1 and
use “tic” and “toc” to measure running time when applying all algorithms to the test
tensors.

Since tucker ALS is an iterative algorithm, then each step of tucker ALS requires
6(I3µ+ I2µ2) +O(Iµ3) operations, whose initial values are chosen by the truncated
HOSVD; mlsvd requires O(I4 + I3µ + I2µ2 + I2µ + Iµ2 + µ3) or O(I4) operations;
Tucker-SVD requires 3(I + µ)L + 2(I3L + I3µ + I2L2 + I2µ2 + I2Lµ + 2IL2µ +
ILµ2) +O(IL2 + IL2µ) or O(I3) operations; Adap-Tucker requires 2(I3L′+ I2L′µ+
IL′µ2 + I3µ+ I2µ2) + 3(I +L′)µ+O(IL′µ) operations; ran-Tucker requires 2(I3L′+
I2L′µ + IL′µ2 + I3µ + I2µ2) + I2L′ + IL′µ + L′µ2 + O(IL′µ) operations; mlsvd rsi
requires (2K + 2)(I4 + I3µ+ I2µ2) + 6(K − 1)I3 + 2(I3L′ + I2L′µ+ IL′µ2 + I3µ+
I2µ2) + I2L′+ IL′µ+L′µ2 +O(IL′µ) operations and lmlra aca requires O(Iµ4 +µ5)
operations, where L, I, L′, and µ are given in section 3.3.

Remark 5.2. We have three statements for the computational complexity of the
proposed algorithms used in this section:

(a) In comparison with Tucker-SVD, Tucker-pSVD takes more than 2K(I4 +
I3µ+I2µ2)+6(K−1)I3 +6I2L2 operations to generate Bn for all n = 1, 2, 3.

(b) Both Tucker-pSVD with K = 1 and mlsvd require O(I4) operations. How-
ever, for Tucker-pSVD with K = 1, the coefficient of I4 is 2; and for mlsvd,
the coefficient of I4 is 6 or 14. As shown in [22, p. 493], Golub–Reinsch SVD
and R-SVD require 14IJ2 + 8J4 and 6IJ2 + 20J3 operations, respectively,
for the SVD of A ∈ RI×J with I ≥ J .

(c) Both Tucker-pSVD and mlsvd rsi require O(I4) operations. However, for
Tucker-pSVD, the number of coefficients of I4 is 2K; and for mlsvd rsi, the
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Fig. 3. For Example 5.1, numerical simulation results of applying Tucker-pSVD, Tucker-SVD,
tucker ALS, lmlra aca, mlsvd, Adap-Tucker, ran-Tucker, and mlsvd rsi to the tensor A with different
noise levels from −30 to 30.

number of coefficients of I4 is 2(K+ 2). When we analyze the computational
complexity of Tucker-pSVD, we cite [22] for a leading flop constant of 6 using
the R-SVD algorithm. However, when we apply Tucker-SVD and Tucker-
pSVD to the test tensors, for each n, we only need the columnwise orthogonal
matrix consisting of µn leading left singular vectors.

5.1. Simulations using synthetic data. In this section, we present three syn-
thetic tensors to illustrate the proposed algorithms are efficient for the low mutlilinear
approximation of a tensor.

Example 5.1. Let B ∈ RI×I×I be given in the Tucker form:

B = G ×1 Q1 ×2 Q2 ×3 Q3,

where the entries of G ∈ RR×R×R and Qn ∈ RI×R (n = 1, 2, 3) are i.i.d. Gaussian
variables with zero mean and unit variance. This type of B is also used in [5].

We now compare the proposed randomized algorithms with Tucker-pSVD, Tucker-
SVD, tucker ALS, lmlra aca, mlsvd, Adap-Tucker, ran-Tucker, and mlsvd rsi for the
low multilinear rank approximation of A ∈ RI×I×I . The form of A is given as
A = B + βN , and N ∈ RI×I×I is an unstructured perturbation tensor with different
noise level β. The following signal-to-noise ratio (SNR) measure will be used:

SNR [dB] = 10 log

(
‖B‖2F
‖βN‖2F

)
.

The FIT value for approximating the tensor A is defined by

FIT = 1− ERR,

where ERR are given in (5.1). We assume that I = 400 and R = 50. The results of
Tucker-pSVD, Tucker-SVD, tucker ALS, lmlra aca, mlsvd, Adap-Tucker, ran-Tucker,
and mlsvd rsi, applied to the tensor A with different noise level SNRs are shown in
Figure 3.
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Fig. 4. For Example 5.2, numerical simulation results of applying Tucker-pSVD, Tucker-
SVD, tucker ALS, lmlra aca, mlsvd, Adap-Tucker, ran-Tucker, and mlsvd rsi to the tensor A with
P = 5, 10, . . . , 50 and s = 10.

From Figure 3, in terms of CPU time, Tucker-SVD is the fastest one, Tucker-
pSVD is competitive with mlsvd rsi and faster than mlsvd, lmlra aca, tucker ALS,
ran-Tucker, and Adap-Tucker. In terms of RLNE, Tucker-pSVD, tucker ALS, mlsvd,
and mlsvd rsi are the best ones.

Remark 5.3. As shown in Figure 4, for each algorithm, the CPU time of different
SNRs is not very different. The reason is that the size of C is 400 × 400 × 400 and
P = 50.

Example 5.2. We will compare the proposed randomized algorithms with Tucker-
pSVD, Tucker-SVD, tucker ALS, lmlra aca, mlsvd, Adap-Tucker, ran-Tucker, and
mlsvd rsi for the low multilinear rank approximation of A ∈ RI×I×I , where the entries
of A are generated by sampling some smooth functions. The entries of A are given
by

aijk =
1

(is + js + ks)1/s
,

where s is a positive integer. The type of tensor A is chosen from [5].

We assume I = 400. The results of Tucker-pSVD, Tucker-SVD, tucker ALS,
lmlra aca, mlsvd, Adap-Tucker, ran-Tucker, and mlsvd rsi, applied to the tensor A
with different multilinear ranks {P, P, P} and s = 10, are shown in Figure 4.

From Figure 4, in terms of CPU time, Tucker-SVD is the fastest one, and Tucker-
pSVD is competitive with mlsvd rsi and lmlra aca; in terms of RLNE, Tucker-pSVD
is competitive with lmlra aca.

Example 5.3. We test on a sparse tensor A ∈ RI×I×I of the following format
[50, 55]:

A =
10∑
j=1

1000

j
xj ◦ yj ◦ zj +

I∑
j=11

1

j
xj ◦ yj ◦ zj ,

where xj ,yj , zj ∈ RI are sparse vectors with nonzero entries (in MATLAB, xj =
sprand(I, 1, 0.015), yj = sprand(I, 1, 0.025), and zj = sprand(I, 1, 0.035)). We com-
pute a rank-(R,R,R) Tucker decomposition of A by Tucker-pSVD, Tucker-SVD,
tucker ALS, lmlra aca, mlsvd, Adap-Tucker, ran-Tucker, and mlsvd rsi, respectively.
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Fig. 5. For Example 5.3, numerical simulation results of applying Tucker-pSVD, Tucker-
SVD, tucker ALS, lmlra aca, mlsvd, Adap-Tucker, ran-Tucker, and mlsvd rsi to the tensor A with
P = 5, 10, . . . , 50.

We assume that I = 400. The results of Tucker-pSVD, Tucker-SVD, tucker ALS,
lmlra aca, mlsvd, Adap-Tucker, ran-Tucker, and mlsvd rsi, applied to the tensor A
with different multilinear ranks {P, P, P}, are shown in Figure 5. From this figure, in
terms of CPU time, Tucker-SVD is the fastest one, and Tucker-pSVD is competitive
with mlsvd rsi and tucker ALS. In terms of RLNE, Tucker-pSVD is competitive with
other algorithms.

Example 5.4. For a given p > 0, let v ∈ RI satisfy

vi =

{
1, i = 1, 2, . . . , 50;

(i− 49)−p, i = 51, 52, . . . , I.

We construct the input tensor A ∈ RI×I×I as A = tendiag(v, [I, I, I]), where tendiag
is a function in the MATLAB Tensor Toolbox [2] which converts v to a diagonal tensor
in RI×I×I . Here p controls the rate of decay and we consider two cases: slow polyno-
mial decay p = 1 and fast polynomial decay p = 2. The type of A comes from [57, 59].

We assume that I = 400. The results of Tucker-pSVD, Tucker-SVD, tucker ALS,
mlsvd, Adap-Tucker, ran-Tucker, and mlsvd rsi, applied to the tensor A with different
multilinear ranks {P, P, P}, are shown in Figures 6 and 7. From these two figures, in
terms of CPU time, Tucker-SVD is the fastest one, and Tucker-pSVD is competitive
with mlsvd rsi and tucker ALS. In terms of RLNE, Tucker-pSVD is competitive with
other algorithms.

Example 5.5. Let v ∈ RI satisfy v(1 : 50) = logspace(0, t, 50) and vi = (i− 49)−1

for all i = 51, 52, . . . , I, where logspace(x1, x2, 50) generates a row vector of 50 loga-
rithmically equally spaced points between decades 10x1 and 10x2 . We construct the
input tensor A ∈ RI×I×I as A = tendiag(v, [I, I, I]).

We assume that I = 400 and the multilinear rank is {50, 50, 50}. The results
of Tucker-pSVD, Tucker-SVD, tucker ALS, mlsvd, Adap-Tucker, ran-Tucker, and
mlsvd rsi, applied to the tensor A with different t’s, are shown in Figure 8, which
shows that Tucker-pSVD, Tucker-SVD, tucker ALS, mlsvd, Adap-Tucker, ran-Tucker,
and mlsvd rsi suitable for tensors like A.
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Fig. 6. For Example 5.4, with slow polynomial decay p = 1, numerical simulation results of
applying Tucker-pSVD, Tucker-SVD, tucker ALS, mlsvd, Adap-Tucker, ran-Tucker, and mlsvd rsi
to the tensor A with P = 5, 10, . . . , 50.
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Fig. 7. For Example 5.4, with fast polynomial decay p = 2, numerical simulation results of
applying Tucker-pSVD, Tucker-SVD, tucker ALS, mlsvd, Adap-Tucker, ran-Tucker, and mlsvd rsi
to the tensor A with P = 5, 10, . . . , 50.

5.2. Analysis of handwritten digit classification. In handwritten digits
classification, we train a classification model to classify new unlabeled images. Savas
and Eldén [51] presented two algorithms for handwritten digit classification based
on HOSVD. To reduce the training time, a more efficient ST-HOSVD algorithm is
presented in [61]. In this section, we compare the performance of Tucker-pSVD,
Tucker-SVD, tucker ALS, mlsvd, ran-Tucker, and mlsvd rsi on the MNIST database
[33],5 which contains 60,000 training images and 10,000 test images. The 28 × 28
images have 8-bit grayscales. The digit distribution is given in Table 1. As seen in
Table 1, the training images are unequally distributed over the ten classes. Therefore,
we restricted the number of training images in every class to less than or equal to
5421.

5The database can be obtained from http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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Fig. 8. For Example 5.5, with given multilinear rank {50, 50, 50}, numerical simulation results

of applying Tucker-pSVD, Tucker-SVD, tucker ALS, mlsvd, and mlsvd rsi to the tensor A with
t = 5, 10, . . . , 50.

Table 1
The digit distribution in the MNIST data set.

0 1 2 3 4 5 6 7 8 9 Total
Train 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949 60000
Test 940 1135 1032 1010 982 892 958 1028 974 1009 10000

The classification data can be preprocessed in several ways [19]. Some kind of
blurring and normalization are usual preprocessing techniques. Blurring is important
for the identification process, at least when classifying handwritten digits. The blur-
ring can be described as smoothing the pattern or making sharp edges and corners
softer. Different kinds of blurring can be obtained depending on the function using
in the operation. One of the usual functions is given by

g(x, y) = e−(x
2+y2)/(2σ2),

where the standard deviation σ is used to control the amount of blurring. Some
examples are given in Figure 9.

Denote the number of training images in every class by K with K ≤ 5421. The
training set is represented by a tensor A of size 786 × K × 10. The first mode is
the texel mode. The second mode corresponds to the training images. The third
mode corresponds to different classes. The vector A(:, 10, 2) thus corresponds to the
tenth image representing a two. The classification relies on [51, Algorithm 2]. We use
various algorithms to obtain an approximation A ≈ G ×1 U ×2 V ×3 W, where the
core tensor G has size 65 × 142 × 10. For K = 5000, the results are summarized in
Table 2.

From Table 2, in terms of CPU time, Tucker-SVD is the fastest one and tucker ALS
is the most expensive one; and in terms of classification accuracy, Tucker-pSVD,
tucker ALS, mlsvd, and mlsvd rsi are comparable while Tucker-SVD is the least ac-
curate one.

For different values of K, the results are summarized in Figure 10. From this
figure, in terms of CPU time, tucker ALS is the most expensive one. In terms of
classification accuracy, Tucker-pSVD, mlsvd, and mlsvd rsi are comparable.
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Fig. 9. Examples of the effect of the Gaussian blurring operator with different deviations σ.

Table 2
Comparison of handwritten digits classification.

Training times [sec] RLNE Classification accuracy (%)
Tucker-pSVD 8.4780 0.3549 92.7080
Tucker-SVD 1.3210 0.4617 91.1400
tucker ALS 59.2480 0.3205 93.3190

mlsvd 6.9450 0.3218 93.3600
Adap-Tucker 2.8090 0.4732 92.7160
ran-Tucker 3.3740 0.4682 92.7670
mlsvd rsi 6.2560 0.4682 93.2820
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Fig. 10. Comparison of handwritten digits classification with K = 500, 1000, . . . , 5000.

5.3. One more example. For mlsvd rsi, we use mlsvd rsi (q = 0), mlsvd rsi
(q = 1), and mlsvd rsi (q = 2) to denote the case where the number of subspace
iterations is 0, 1, and 2, respectively. In Tensorlab, mlsvd with “LargeScale” being
true is denoted by mlsvd-LargeScale, and mlsvd with the MATLAB SVD routine is
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Fig. 11. Numerical simulation results of applying Tucker-SVD, Tucker-pSVD, mlsvd rsi (q =
0), mlsvd rsi (q = 1), and mlsvd rsi (q = 2) to the tensor A with P = 5, 10, . . . , 100.

denoted by mlsvd-SVD. Note that mlsvd-LargeScale is the same as mlsvd in the above
two sections.

Example 5.6. Let A ∈ R400×400×400 be given in the Tucker form A = G ×1 Q1×2

Q2 ×3 Q3, where the entries of G ∈ R100×100×100 and Qn ∈ R400×100 (n = 1, 2, 3) are
i.i.d. Gaussian variables with zero mean and unit variance.

When we apply Tucker-SVD, Tucker-pSVD, mlsvd rsi (q = 0), mlsvd rsi (q = 1)
and mlsvd rsi (q = 2) to A with different {P, P, P}, RLNE and CPU time are shown
in Figure 11. From this figure, in terms of RLNE, Tucker-pSVD is better than Tucker-
SVD, and worse than mlsvd rsi (q = 0), mlsvd rsi (q = 1), and mlsvd rsi (q = 2).
In terms of CPU time, Tucker-SVD is the fastest, and when P > 50, Tucker-pSVD
is faster than mlsvd rsi (q = 1) and mlsvd rsi (q = 2), and comparable to mlsvd rsi
(q = 0). Overall, Tucker-pSVD has a balanced good accuracy and high speed for large
P values.

In the following, we give a simpler MATLAB implementation of ST-HOSVD,
which is denoted by matlab sthosvd.

function [G, Q1, Q2,Q3 ] = matlab sthosvd (X, r1 , r2 , r3 )
[ I , J ,K] = s ize (X) ; X1 = reshape (X, [ I J∗K] ) ; S1 = X1∗X1 ’ ;
[ Q1 , E1 ] = eig ( S1 ) ;
E1 = diag (E1 ) ; [ ˜ , ind ] = sort (E1 , ’ desc ’ ) ; Q1 = Q1 ( : , ind ( 1 : r1 ) ) ;
Y1 = Q1’∗X1 ; Y1 = reshape (Y1 , [ r1 J K] ) ;
Y2 = reshape ( permute (Y1 , [ 2 1 3 ] ) , [ J r1 ∗K] ) ;
S2 = Y2∗Y2 ’ ; [ Q2 , E2 ] = eig ( S2 ) ; E2 = diag (E2 ) ;
[ ˜ , ind ] = sort (E2 , ’ desc ’ ) ; Q2 = Q2 ( : , ind ( 1 : r2 ) ) ; Y2 = Q2’∗Y2 ;
Y2 = permute ( reshape (Y2 , [ r2 r1 K] ) , [ 2 1 3 ] ) ;
Y3 = reshape ( permute (Y2 , [ 3 2 1 ] ) , [K r1 ∗ r2 ] ) ;
S3 = Y3∗Y3 ’ ; [ Q3 , E3 ] = eig ( S3 ) ; E3 = diag (E3 ) ;
[ ˜ , ind ] = sort (E3 , ’ desc ’ ) ; Q3 = Q3 ( : , ind ( 1 : r3 ) ) ; G3 = Q3’∗Y3 ;
G = permute ( reshape (G3 , [ r3 r2 r1 ] ) , [ 3 2 1 ] ) ;
end
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Fig. 12. Numerical simulation results of applying Tucker-SVD, Tucker-pSVD, mlsvd-SVD,
mlsvd-LargeScale, and matlab sthosvd to the tensor A with P = 5, 10, . . . , 100.

When we apply Tucker-SVD, Tucker-pSVD, mlsvd-SVD, mlsvd-LargeScale, and
matlab sthosvd to A with different {P, P, P}’s, RLNE and CPU time are shown in
Figure 12. This figure shows that in terms of CPU time, Tucker-SVD is the fastest,
and Tucker-pSVD is slower than Tucker-SVD, mlsvd-LargeScale, and matlab sthosvd,
and faster than mlsvd-SVD. In terms of RLNE, Tucker-pSVD is better than Tucker-
SVD, and worse than mlsvd-SVD, mlsvd-LargeScale, and matlab sthosvd.

6. Conclusions and further considerations. In this paper, we proposed a
randomized algorithm for the low multilinear rank approximation of a tensor with
a given multilinear rank, which is based on power scheme, random projection, and
SVD. Numerical examples illustrated that this algorithm is competitive with other
algorithms, such as tucker als, mlsvd, and mlsvd rsi in terms of RLNE.

Our method can be further developed: (a) by combining our results and the work
of [25], we can develop concentration results that give insight into the tail bounds;
(b) by replacing standard Gaussian matrices by Rademacher random matrices, sparse
Rademacher random matrices, subsampled randomized Fourier transforms, and so on,
it is possible to combine the analysis with the probabilistic bounds for low multilinear
rank approximations; and (c) in this paper, the code for Tucker-pSVD is only used
to compute low multilinear rank approximation. We will explore whether there is a
more efficient code for Tucker-pSVD in our future research.
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