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A B S T R A C T

Non-negative tensor factorization (NTF) algorithm is an emerging method for high-dimensional data analysis,
which is applied in many fields such as computer vision, and bioinformatics. This paper presents an effective
method to accelerate NTF computations and proposes a corresponding hardware architecture, which consists of
multiple processing units. The decomposed factors are calculated by using shared intermediate results. By using
the proposed method, NTF can be implemented in parallel and hardware resources can be saved by sharing.
In this paper, we evaluate the proposed architecture on Xilinx Virtex-6 FPGA XC6VLX760T and apply it into 2
applications, i.e. video background estimation and facial images processing. The experimental results show that
the proposed hardware architecture achieves over 80 times faster than CPU implementation of NTF. Compared
with the implementations on GPGPU, the proposed architecture achieves nearly the same speedup. While the
strategy in this paper is applied to GPU platforms, the execution time can be reduced by a half, due to the
computational sharing in this paper.

1. Introduction

Higher dimensional array, which is known as a tensor, is prevalent
across science and engineering [1]. It is widely applied in the fields of
data mining [2], computer vision [3] and image processing [4]. The
order of a tensor is defined as the number of dimensions. Specially, a
vector and a matrix are the first-order and second-order tensor, respec-
tively [5]. We consider a third-order tensor, also known as three way
tensor, is addressed by three indices, as shown in Fig. 1. For a third-
order tensor of rank-1, i.e. G ∈ ℝR×S×T , it can be written as the outer-
product of 3 vectors, G = u(1) ⊗ v(1) ⊗ w(1). Similarly, a rank-K tensor
is the sum of K outer-products of 3 vectors, G = ∑K

j=1 u(j) ⊗ v(j) ⊗ w(j).
For tensor factorization, the main goal is to decompose the tensor as

factorized matrices or tensors and by using such factorized components
one can reconstruct the tensor approximately. It is a high-dimensional
technique to generate basis elements, which is widely used in feature
extraction and dimensionality reduction. Tensor decomposition can be
traced back to 1920s, Hitchcock first introduced how to express a tensor
with a sum of products. Later in 1944, Cattell raised multi-dimension
model applying on psychological theory. During 1960s–1970s, Tucker,
Carroll, Chang, Harshman used tensor decomposition method on psy-
chometrics. In 1980s, this method start to be applied and soon prevailed
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in the field of chemometrics [6]. Over the past decade, this method have
been applied to a wide range of fields. Basically, there are two types of
tensor factorizations: CANDECOMP/PARAFAC (CP) decomposes a ten-
sor as a sum of rank-1 tensors, which is visualized as Fig. 2, and the
TUCKER factorization (Higher-Order SVD, HOSVD) is a higher-order
form of principal component analysis (PCA) [7].

In this paper, we mainly focus on CP factorization, which is unique
under mild constraints and easy to interpret the decomposed compo-
nents. Suppose G ∈ ℝR×S×T is a three way tensor. To perform CP decom-
position means to find (minĜ ∥ G − Ĝ ∥) with Ĝ = ∑K

j=1 u(j) ⊗ v(j) ⊗ w(j),
which is illustrated as Fig. 2.

Because the non-negative property is used in a wide variety of appli-
cations ranging from document analysis to image processing to bioinfor-
matics, it is natural to impose non-negative constraints on the decom-
posed terms, which results in non-negative tensor factorization (NTF).
Researchers have proposed various methods to solve the NTF computa-
tion. Lathauwer [8] presented a higher-order power method to calcu-
late rank-1 tensor factorization. Kolda [9] used shifted power method to
calculate eigenvectors of tensors. Shashua [3] proposed a non-negative
tensor factorization algorithm and applied it to statistics and computer
vision. It treated a set of images as a third-order tensor that is better in
handling the spatial redundancy in images.
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Fig. 1. A third-order tensor.

Fig. 2. The illustration of 3-D tensor factorization.

The acceleration of non-negative matrix factorization (NMF) has
been implemented on GPU [10,11]. As an extension of NMF, however,
NTF is of much higher dimensionality that cause its computations take
hours [12]. Fast Algorithms have been proposed to accelerate NTF com-
putations [13]. Some existing works have been proposed to implement
NTF on GPU platforms. In Ref. [14], a multi-processor strategy is pre-
sented to evaluate the speed of NTF computations. The peak speedup
is only 6.8 times with even 10 processor used. In Ref. [12], it proposed
to divide the computation into different thread blocks. It achieved a
higher speedup than that of CPU platforms. Although it stated that
the optimized method is presented, we consider that more improve-
ments can be obtained. In this paper, we propose an improved compu-
tational scheme to execute NTF algorithm on hardware. Some of our
proposed ideas can also be applied to GPU platforms. In this paper,
the GPU-based parallel implementation using the motivated ideas is
also given. The contributions of this paper can be summarized as
following:

• The proposed hardware architecture can achieve a speedup of 80×
compared with NTF implemented on traditional CPU platforms.

• In the proposed architecture, we adopt our improved scheme that
produces the components in parallel, while they can only be com-
puted one-by-one in the previous works because of the data depen-
dency.

• By using the proposed methods, the computational complexity
decreases. Meanwhile, hardware resources can be also be reduced
by hardware sharing in the proposed architecture.

The paper is organized as follows. In Section 2, the overview
of an NTF algorithm is presented and analyzed. The challenges of
computing the NTF algorithm and corresponding improved meth-
ods are provided in Section 2.2. The proposed hardware architec-
ture is described in Section 3 and the improved GPU implementa-
tion is discussed in Section 4. In Section 5, we analyze the per-
formance of the proposed architecture. The application results and
comparisons are also given. In Section 6 we briefly conclude the
work.

2. Algorithm for nonnegative tensor factorization (NTF)

2.1. Original algorithm

Taking a 3-way tensor G as an example, non-negative tensor factor-
ization (NTF) is to obtain an approximation of G by a series of outer-

product (Kronecker product) of vectors. As shown in Fig. 2, the outer-
product of one set of vector, u ⊗ v ⊗ w, can be used to approximate the
original tensor G. It could be more precise by using K sets of vectors.
The formulation of tensor factorization of a 3-way tensor G is given as
Eq. (1), where u(j) denotes one of the decomposed vector in the j − th
set of component, as shown in Fig. 2.

G̃ =
K∑

j=1
u(j) ⊗ v(j) ⊗ w(j) (1)

G̃ is an approximation to original tensor G. It is obtained by solving
a least-square problem in Eq. (2) with non-negative constraints, where
∥ · ∥F represents F-norm. When K is set to 1, the procedure is similar
and is also widely adopted in various applications.

⎧⎪⎪⎨⎪⎪⎩

min
(u,v,w)

1
2

‖‖‖‖‖‖
G −

K∑
j=1

u(j) ⊗ v(j) ⊗ w(j)
‖‖‖‖‖‖

2

F
subject to ∶ u(j), v(j),w(j)

≥ 0

(2)

There are various methods to solve the optimization problem in Eq.
(2). In Ref. [3], the solution is obtained by gradient descent method
iteratively. The convergent property has been proved in Refs. [3,15].
The components u, v, and w are updated iteratively, as shown in Eq.
(3).

u(j)r ←
u(j)r

∑
s,tGr,s,tv

(j)
s w(j)

t∑K
m=1 u(m)

r < v(m), v(j) >< w(m),w(j) >
(3a)

v(j)s ←
v(j)s

∑
r,tGr,s,tu

(j)
r w(j)

t∑K
m=1 v(m)

s < u(m), u(j) >< w(m),w(j) >
(3b)

w(j)
t ←

w(j)
t
∑

r,sGr,s,tu
(j)
r v(j)s∑K

m=1 w(m)
t < u(m), u(j) >< v(m), v(j) >

(3c)

In Eq. (3), u(j)r represents the r − th element of u(j).
∑

s,tGr,s,t v
(j)
s w(j)

t
represents a tensor-vector product. To clearly express the algorithm,
all the inner products in the denominator of Eq. (3) can be calculated
and stored in three matrices with a size of K × K respectively, which
is named as Mu, Mv, and Mw. For example, < u(m), u(j) > is stored in
Mu(m, j).

Mu =

⎡⎢⎢⎢⎢⎢⎣

< u(1), u(1) > … < u(1), u(k) >

< u(2), u(1) > … < u(2), u(k) >

⋮ ⋱ ⋮

< u(k), u(1) > … < u(k), u(k) >

⎤⎥⎥⎥⎥⎥⎦
Therefore, the procedure of computing the component u and v is

shown in Algorithm 1. To simplify the representation of the expres-
sion, in Algorithm 1, the u(j)r is given by ur , with the elimination of
the symbol j. Since we optimize the computation scheme for every
two consecutive components and all the computations for every two
consecutive components follow the same pattern, only the first two
components computation, i.e u, and v, are given in Algorithm 1
and Algorithm 2. Through this simplification, the hardware resources
and computation sharing strategy we adopt can be observed more
clearly.
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Algorithm 1 Original algorithm for nonnegative
tensor factorization.

2.2. Computation-shared in NTF

Our Goal is to propose a flexible hardware architecture that can exe-
cute the NTF algorithm more efficiently. The execution time on hard-
ware is expected to outperform software implementations. To demon-
strate our ideas more explicitly, we first analyze the bottlenecks of the
NTF computations and then propose the strategies for building up an
efficient NTF hardware architecture.

By analyzing Eqs. (3a)–(3c), the main challenges are summarized as
follows:

1) Considering the original tensor and the decomposed components
are possible to be in large size, it requires a large amount
of memories and communication bandwidth. Thus, the compu-
tation must be divided into blocks. In Ref. [12], a method
based on block dividing on GPU platforms is proposed. It can
also be applied to CPU, FPGA or other platforms. Taking 3-
way NTF as an example, the block-based computation is shown
as Eq. (4), where t1, t2 are two specified block size value for
component w.

2) The computation of each component u, v, and w are dependent on
each other. To calculate v, the component u in Eq. (3b) is derived
from the new updated results in Eq. (3a). In the original algorithm,
the computation of v would begin after the computation of u has
been completed. Thus, the components are produced one-by-one in
previous works [12].

3) The computational complexity of the algorithm is large. Meanwhile,
the tensor data have to be loaded each time when computing a new
update of each component. For example, the tensor data are used
three times in 3-way case. It will increase the requirements of mem-
ory bandwidth during the computation.

In order to overcome the challenges in the original algorithm,
we propose an efficient method, as shown in Algorithm 2. In Algo-
rithm 1 and 2, only two components are shown. In the improved algo-
rithm, the numerators of the first component are calculated, while
some intermediates are stored for the second component computation.
By using the intermediates in the first component, the computations
for the second component are much easier than that in the original
algorithm.

Algorithm 2 Improved algorithm for sharing data and
reducing memory accessing.

∑
t
[
∑

s
[Gs,t v

(j)
s ]w(j)

t ] =
∑
t1
[
∑
s1
[Gs1 ,t1 v(j)s1 ]w

(j)
t1
]

+
∑
t1
[
∑
s2
[Gs2 ,t1 v(j)s2 ]w

(j)
t1
] + · · · (4)

As shown in Fig. 3, a 3-D tensor is sliced in different ways when
computing the components. A slice is used to calculate one element
of the first component u. The intermediates can be used to compute a
partial result of the second component v.

Compared with the original algorithm, the results are the same as
that in the original algorithm. The differences are that time complexity
is smaller and hardware resources can be saved by using the cached
intermediates. Especially based on the hardware architecture strategies,
such as parallelism and pipeline flow, more advantages in the improved
method can be achieved to address the challenges.

• The computational complexity is less than the original algorithm.
The complexity for the first component u is the same with only one
additional operation added into the loop, but the complexity for the
second component v is much less than the original algorithm. In the
improved algorithm, there is only one loop for the computation of
second component, while there are nested loops in the original algo-
rithm. This improvement is then applied to the third component w
and the first component u in the following iteration. Meanwhile, for
the hardware architecture, some specified strategies can be applied
to improved the speed, such as parallelism and pipeline flow.

• From algorithm 2, the tensor data are loaded only once for two com-
ponents computation and the cached intermediates generated in the
first component computation are reusable, which reduces the mem-

Fig. 3. The slicing of 3-way tensor for 3 components computation.
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Table 1
The output sequence of the two parts.

Round 1 2 3 4 5 6

Output u(1) w(1) v(2) u(3) w(3) v(4)

v(1) u(2) w(2) v(3) u(4) w(4)

ory bandwidth requirement. Meanwhile, the hardware resources for
the second component computation will be obviously much less
because of the compacted computations.

∙ Two components computations can work in parallel. During the
computations of the first component, some intermediates are re-
organized and used for the computation of the second component.
The second component can be produced once the first component.

Throughout the paper, we call the parallel computations of every
two consecutive components as a round. As shown in Table 1, in
each round, i.e. in each column, the upper output is called the first
component and the lower called the second component. In the first
round, the component u and v are produced, while in the second
round, the component w and component u of the next iteration are
calculated.

Pipeline and scalability are very important aspects in a hard-
ware architecture. Based on the improved algorithm, it is also neces-
sary to consider how to design the details to execute the improved
algorithm. The corresponding architecture is shown in the next
section.

3. Hardware architecture

To illustrate the proposed architecture more explicitly, we consider
a video background estimation problem [16], where the video is con-
sidered as a third-order tensor. We analyze an example of video back-
ground estimation in which 256 frames are processed as a group and
a 32 × 32 block is tiled in a frame. Thus, the original tensor data G is
of size 32 × 32 × 256. Performing a NTF on such tensor returns three
vectors, the last of which represents the variation of time domain. The
results and analysis would be shown in the next section. Here, we first
present the architecture for NTF.

Compacted from Eq. (3), the formulation of rank-1 NTF is rewrit-
ten as Eq. (5), which is adopted in various applications, such as video
background estimation.

ur ←

∑
s,tGr,s,t vswt

< v, v >< w,w >
(5a)

vs ←

∑
r,tGr,s,turwt

< u, u >< w,w >
(5b)

wt ←

∑
r,sGr,s,turvs

< u, u >< v, v >
(5c)

The challenges to compute the rank-1 NTF in (5), have been
described in the previous sections. The proposed architecture discussed
in the following part could address them. It can handle any size of ten-
sor data.

3.1. Top-level architecture

The proposed top-level architecture for the improved algorithm is
shown in Fig. 4. The whole architecture consists of four parts: ‘U_1’,
‘U_2’, ‘U_3’, and Control Unit (CU). ‘U_1’ computes the numerators of
the first component u. In ‘U_1’, the computations for eight elements
{u1, u2,… , u8} are parallel. The results of ‘U_1’ are sent to ‘U_2’, which
calculates the denominator and produces final results of the first com-
ponent u in the first round.

Meanwhile, the intermediate results in the ‘U_1’ are sent to ‘U_3’.
Along with the updated u, it can produce the second component v. ‘U_3’
acts the same roles as ‘U_1’ and ‘U_2’, but the internal structures are
much simpler. In this proposed architecture, the two data-dependent
computations can work simultaneously, which can reduce the compu-
tational complexity of the whole process.

Based on the improved algorithm and corresponding architecture,
two components can be produced in one round. Since there are three
components in our case and the calculated components are fed back to
‘U_1’, ‘U_2’, and ‘U_3’ to update themselves in the next iteration, the
produced components are needed to be stored in corresponding mem-
ories. Meanwhile, the arrangements of feedback are also essential. All
these works are executed by CU (Control Unit).

3.2. Architecture of ‘U_1’

The internal structure of ‘U_1’ is shown in Fig. 5. The numerators in
Eq. (5) are computed by ‘U_1’. Considering the hardware resources in
a single FPGA chip, we design eight pipelines to work simultaneously,

Fig. 4. The slicing of 3-way tensor for 3 components computation.
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Fig. 5. The internal structure of U_1 in top architecture.

each of which calculates a part of numerator of specific component
in Eq. (5). Taking the first component u as an example, in the first
pipeline, PEs (Processing Elements) execute multiply-accumulate oper-
ations with eight tensor data {G1,1,i+1,G1,1,i+2,… ,G1,1,i+8} and compo-
nent w elements {wi+1,wi+2,… ,wi+8}. The results of PEs are then mul-
tiplied with another components {vi+1, vi+2,… , vi+8}. Since there are
eight pipelines, ‘U_1’ can process 64 tensor data each time. In the end,
it generates the numerator of {ui+1, ui+2,… , ui+8} in the first round.

In Fig. 5, eight PEs are employed, each of which processes eight ele-
ments of a tensor. Therefore, “U_1” produces the intermediate results
for a sub-block of tensor. To get the summation result in Eq. (5), two
accumulators (ACCs) are utilized to produce the summation of interme-
diate results of sub-block tensor. Two accumulators are used in tensor-
vector-multiplication for two vectors respectively.

The internal structure of a PE is shown in the right block of Fig. 5.
Besides the multiplier-accumulator unit, there are also multiplexers in
it. Since the computation is divided into blocks of size eight, the mul-
tiplexers are used to select corresponding multiplier-accumulator units
for the last block if its size cannot be divided eight exactly.

The contents of feedback components {F1, F2,… , F8} and F9 to PEs
varies in different round. {F1, F2,… , F8} and F9 are w and v in the first
round. In the second round, they are v and u. {F1, F2,… , F8} and F9 are
w and v again in the third round. This is realized by CU (Control Unit),
which will be described in the following.

3.3. Architecture of ‘U_2’

The internal structure of computing unit ‘U_2’ is shown in Fig. 6.
It generates the denominators, which are used to produce the first
updated component. In this paper, we use rank-1 NTF as a demo, so
the denominator in the formulation is the product of the two values.
Taking the first component as an example, the CU (Control Unit) is
responsible for computing < v, v > and < w,w >. Corresponding to the
eight pipelines in the ‘U_1’, there are also eight dividers in the ‘U_2’ to
update eight elements of the first component in each clock cycle.

3.4. Architecture of ‘U_3’

The internal structure of computing unit ‘U_3’ is shown in Fig. 7. It
computes the second component by using the intermediates from ‘U_1’.
The intermediates are the data after one dimension reduction. Since
the slicing of the original 3-D tensor data for the second component is
different from the first one, the intermediates cannot be used for com-
puting the second component in the same order as the first one. Thus,
the intermediates are first stored in FIFO. After the computation of the
first component is completed, they are feedback to the ‘U_3’ to calcu-

Fig. 6. The internal structure of U_2 in top architecture.

Fig. 7. The internal structure of U_3 in top architecture.

late a part of each element in the second component. By applying this
strategy, the hardware resources for the second component computa-
tions are much less than the first component. Meanwhile, the second
component can be produced sequentially once the computations of the
first component are completed, while in the original algorithm the two
components are calculated one by one.

In the computations for the third component w, both u and v should
be newly updated previously. The fact means that the computations for
w cannot be executed in parallel with u and v in the same iteration,
but the proposed architecture can still work for the w in the current
iteration and u in the next iteration, as shown in Table 1.

3.5. Control unit

In the proposed architecture, the CU (Control Unit) is responsible
for generating control signals and managing memory. Since there are
three memories, each of which is used to stored one component, the
two parallel results should be allocated into the correct memories by
CU. The memory management scheme is shown in Fig. 8. In the ‘Round
1’ (described in Table 1), the updated results are buffered in the mem-
ories for u and v, while the v and w are fed back to the computa-
tion units. As Fig. 8 shows, it works in the same way for the other
rounds.

In “U_1”, 8 PEs work simultaneously, each of which processes 8 ten-
sor data at a time. Since all tensor data are loaded once in one round,
it takes (R∗S∗T∕64) clock cycles for the proposed architecture to pro-
duce the first component. Once an element of the first component is
produced, it is fed to “U_3” to compute all the elements of the sec-
ond component. Given u and v are the first and second component, it
takes (R∗S∕8) clock cycles to produce the second component, where R
and S are the size of two components. As shown in Table 1, 2 itera-
tions are completed in 3 rounds, and it takes (R∗S∗T∕64) + (R∗S∕8),
(R∗S∗T∕64) + (R∗T∕8), and (R∗S∗T∕64) + (S∗T∕8) clock cycles for
the round 1, 2, and 3. The time complexity in the following rounds is
in the same way.
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Fig. 8. The memory management in the proposed architecture.

4. GPU implementations

4.1. Parallelizing NTF algorithm with CUDA

Algorithm 3 Proposed GPU-based NTF Algorithm (one round).
Input: G, u, v, w
Output: u, v, w
Intermediate: 𝛼, Mw
1: //Copy G, u, v, w from CPU memory to GPU global memory

d_G, d_u, d_v, d_w
2: cudaMemcpy ({d_G, d_u, d_v, d_w}, {G, u, v, w}, size of the

data, cudaMemcpyHostToDevice)
3: for the k − th iteration do
4: //Launch GPU kernel 1
5: Kernel_1 <<< dimGrid, dimBlock_1 >>> (d_G, d_u,

d_v, d_w, d_𝛼, d_Mw)
6: cudaThreadSynchronize()
7: //Launch GPU kernel 2
8: Kernel_2 <<< dimGrid, dimBlock_2 >>> (d_u, d_v,

d_𝛼, d_Mw)
9: cudaThreadSynchronize()
10: end for

Algorithm 4 GPU Kernel 1.
Input: G, v, w
Output: d_u, d_𝛼, d_Mw
1: calculate Mv and Mw
2: d_Mw ← Mw
3: __syncthreads()
4: 𝛼r,s =

∑
tGr,s,twt

5: d_𝛼r,s ← 𝛼r,s
6: __syncthreads()
7: ur =

∑
s𝛼r,svs

MvMw
8: d_ur ← ur

Algorithm 5 GPU Kernel 2.
Input: d_u, d_𝛼, d_Mw
Output: d_v
1: ur ← d_ur
2: calculate Mu
3: Mw ← d_Mw
4: 𝛼r,s ← d_𝛼r,s
5: __syncthreads()
6: 𝛽s =

∑
r𝛼r,sur

7: vs =
𝛽s

MuMw
8: d_vs ← vs

The proposed GPU-based NTF algorithm is shown in Algorithm 3.
We take the first round as an example where the vectors u and v need
to be updated. Because the new u is required in order to calculate v, two

GPU kernels (Algorithm 4 and Algorithm 5) are designed for updating u
and v respectively and also implementing global synchronization. There
is only one-round data transmission for the tensor data and initial u, v,
w data between CPU memory and GPU global memory.

4.2. Thread allocation and memory access

For kernel 1, we allocate N × N thread blocks where N is deter-
mined by GPU Compute Capability, and one slice of G is divided into
N × N tiles that are computed by one thread block. Different blocks
deal with corresponding slices in tensor value G. For kernel 2, the num-
ber of threads equals to the length of vector u.

In order to avoid bank conflict by accessing values on the same
column of G, we allocate N × (N+1) shared memory for G and inter-
mediate results where N is block dimension. The tensor value G is
unsigned char type. To maximize data transfer rate when accessing G
in global memory, each thread deals with one byte (four G elements) in
a coalesced access manner.

5. Performances evaluation and results

5.1. Case study: background estimation

Tensor Factorization can be also applied to background estimation
of a video with moving object in the scene. Taking a gray video as an
example, the data are represented by a 3-way tensor with the size of
R × S × T, where R and S are video frame size, and T is the num-
ber of frames to be analyzed. By applying tensor factorization to the
video, the three components, u, v, and w represents the scene chang-
ing in different dimensions, where w indicates moving object or still
background.

Fig. 9 presents an example of video background estimation using
tensor factorization. The 200-th frame of the test video is shown in
Fig. 9(a). Three typical blocks are selected to be analyzed. ‘Block 1’ is
the region of fast moving object, while the objects stay still at region
‘Block 2’ after it enters the scene. In region ‘Block 3’, it is the still back-
ground in the video.

In Fig. 9(c)–(e), the last decomposed vector of NTF results, w, in dif-
ferent region is shown. The locations of moving objects are represented
by a vector, instead of a video. The elements in the vector indicate when
the object enters or exits the regions. The value keeps almost constant
if there is no moving objects, or it goes down while the objects appear
or disappear in the regions. It is easier to determine the locations of
objects by analyzing the vector. After identifying the location of objects,
the entire background can then be reconstructed. In this example, the
fast moving object moves into ‘Block 1’ in the 200-th frame, while
another object enter in ‘Block 2’ in the 150-th frame and staying still.
In the ‘Block 3’, the value of w and the corresponding curve in Fig. 9(e)
almost keeps constant, and thus it is considered as background all the
time.

The estimated background is shown in Fig. 9(b). The static regions
are preserved in the estimated background, and different types of mov-
ing objects are removed from the video.

5.2. Case study: facial images

For gray facial images, if we stack the training images as a cube,
a 3-way tensor can be constructed. After NTF, we can get u, v and w.
The outer product of u and v are considered as basis facial image. In
the inference stage, when new images come, they are calculated with
the basis vector u and v by tensor-vector-multiplication, and thus new
images are projected on the basis facial images, which can be called the
coefficients. Giving that K is 50, the obtained 50 coefficients for each
images are called the representation of image features, which will be
fed to an SVM classifier for classification.
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Fig. 9. An example of NTF application to video background. (a). The original 200-th frame; (b). The estimated video background. (c)–(e).the tensor factorization
results, w, representing the scene changing in three block region in (a).

We used the MIT CBCL face set to recover the factors. The mea-
surement vector is calculated by the inner-product between the factors
and the facial or non-facial image. SVM classifier is used to catego-
rize positive (faces) and negative (non-faces) examples. We varied the
kernel of the SVM from linear to polynomial of degree five to RBF
and recorded the percentage of correctness over a test set. The train-
ing and testing was conducted on a leave one out paradigm where
the facial and non-facial images are selected as training set and test
set.

In each trial, different training and testing subsets were used and
the results were averaged over the trials. We used 50 NTF factors and
50, 20 and 6 NMF factors in three separate trials and also used PCA fac-
tors for comparison. The measurements from the NTF factors generated
the highest classification accuracy compared to 50 NMF factors which
contain a 20-fold space increase.

Table 2 presents the classification results of the measurements by
SVM classifier. It demonstrates that the classification result obtained
by using NTF is more accurate than using matrix factorization and
PCA method. To compare these methods, for NMF method, differ-
ent number of factors, such as 6, 20, and 50, are taken as exam-
ple, which is corresponding to K in Eq. (2) and Fig. 2. The results in
Table 2 shows that NTF achieves the best accuracy under the same
number of factors. In this example, only the facial images are used
to generate the 50 factors. Fig. 11 presents the comparisons between
the original facial images and the reconstructed faces using 20 and
50 factors.

Table 2
The correct percentages of the test facial and non-facial
images by the classifier with linear, polynomial and
RBF kernels. NTF is only applied to facial images.

linear poly d = 5 RBF

NTF(50) 93.8% 95.8% 97.6%
NMF(50) 91.6% 94% 95%
NMF(20) 87.5% 90.1% 89%
NMF(6) 83.2% 84.3% 86%
PCA 90.8% 94% 91.7%

5.3. Speed

Given that the size of 3-way tensor to be decomposed is R × S × T,
the time complexity of the proposed architecture is O(R × S × T∕N),
where R × S × T is the size of a tensor, and N is parallelism factor of
our proposed architecture. In our design, N is (64 × 2), where ”64” is
derived from the number of PEs we used in the architecture, and ”2”
originate from the computation sharing.

Here, the comparisons of execution time between the proposed
architecture and software implementation are presented. For the soft-
ware implementation, we program in C language following the flow of
Algorithm 1. It is run on the Intel Xeon CPU X5675 @3.07 GHz with
installed memory 12 GB. We measure the execution time of software
on CygWin Linux. The hardware architecture is simulated on Xilinx
Virtex-6 xc6vlx760 FPGA.
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Fig. 10. Execution time comparison between software and the proposed architecture.

In the comparison, we run 100 iterations in both hardware architec-
ture and software implementation. Since 32 × 32 × 256 is selected as
block size in our design, we evaluate the speed on different frame size
of video, from 32 × 32 to 512 × 512.

As shown in Fig. 10, under different numbers of blocks, the execu-
tion time of the proposed architecture in this paper is about 80 times
less than software implementations. As the hardware architecture
processes a tensor block-by-block, the number of blocks actually
represents the size of tensor to be calculated. We also implement 2
GPU versions to illustrate the improvement by using our method. The
GPU implementation was run on NVIDIA Tesla C2075 at 575 MHz. For
the first one, we follow the flow of algorithm 1 and for the second, we
implement it as Section 4 mentioned. From Fig. 12, the execution time
of our improved GPU version is about 1.6× faster than the original
non-optimized algorithm.

5.4. Area

Table 3 shows the hardware resource usage of the proposed
architecture based on Xilinx Virtex-6 xc6vlx760 FPGA. The architec-
ture consumes about 10% of available resources of the chip. As this

Fig. 11. The facial reconstruction using NTF. Top to Bottom: reconstruction
using 20 NTF factors, reconstruction using 50 NTF factors, and the original
facial images.

Fig. 12. Execution time comparison between original and improved algorithm.

proposed hardware architecture is the first one for non-negative tensor
factorization, it is compared with non-negative matrix factorization
(NMF) in terms of hardware resource usage, as shown in Table 3.
Through this table, we can observe that, though NTF is an 3D extension
of NMF and thus more computational complex, the resource usage will
not increase linearly with the computational complexity increasing and
still comparable.

5.5. Comparison with previous works

Table 4 presents the time speedup of the proposed tensor archi-
tecture, which is about 80×. Though NMF is far less computational
intensive than the NTF algorithm, in Ref. [17], the speedup was
claimed to be 1.53 compared to its CPU implementation and 23.9 to its
ARM implementation, which is far less than our improvement on NTF.
When NTF is implemented on GPGPU, it accelerates the computations
by 60–100 times. From Table 3, although the hardware resource of
[17] is about one-third of our proposed architecture, the speedup is
over three times higher than [17], which demonstrates the efficiency
the proposed architecture.

In Ref. [14], a multi-processor implementation is proposed. It
can complete the calculation with 100 iterations in 290 s for a
600 × 400 × 200 data set, while it takes about 2.5 s to compute a
512 × 512 × 256 data set on the proposed architecture in this paper.
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Table 3
Resource Usage of the proposed architecture.

proposed tensor architecture [17]

Used Available Utilization Used

Occupied Slices 12,057 118,560 10% –
LUTs 39,506 474,240 8% 13,710
Registers 28,705 948,480 3% 16,871
RAMB36E 9 720 1% 71
RAMB18E 41 1440 2%
DSP48E 117 864 13% 96
Max Frequency 82.7 MHz 100 MHz

Table 4
The comparison of time speedup with existing matrix hardware architecture and tensor GPU accelerator.

proposed hardware FPGA NMF hardware [17] NTF GPU [12] Our NTF GPU

speedup 80 1.53–23.9 60–100 80

Thus, compared with [14], our architecture achieves more than 100
times speedup.

In Ref. [12], an GPU-based method is proposed to accelerate the
NTF computation. Though it claimed the speedup over single-core CPU
are around 60–100 for small data set. When it processes larger data
set, i.e. 600 × 400 × 200, it costs 2.36 s. Compared with [12], the
proposed hardware architecture implemented on FPGA can achieve
about 80 times speedup and it takes about 2.5 s to compute a larger
data set, i.e. 512 × 512 × 256. It is not possible to compare our GPU
implementation with [12] in terms of absolute time consumption, since
the processors are different and it is impossible to imitate all circum-
stances of the measurement. Moreover, different CPU and different
software implementation will also affect the speedup value slightly.
However, from the trend shown in Fig. 12, It is reasonably expected
that the implementation in Ref. [12] can run faster if our ideas is
adopted.

6. Conclusion

This paper has presented an improved method and corre-
sponding hardware architecture for non-negative tensor factoriza-
tion algorithm. By using the improved method on hardware plat-
forms, the computations can work in parallel and the hardware
resources usage can be saved. Compared with traditional CPU
platforms, the proposed architecture has achieved a significant
speedup.

The proposed method can also achieve a better performance on GPU
platform. The ideas in this paper can be applied in various computation
platforms, not only based on hardware architectures, but also multi-
core CPU or GPU platforms.

In this paper, the rank of tensor is set as 1 to simplify the
demonstration of the proposed architecture. For a more general
situation where the rank of tensor is K, the computations fol-
low the same pattern and are dependent. Therefore, the proposed
method in this paper can be adopted in general applications. As
the major contribution of this paper is to utilize the shared com-
putations by increasing the cost of acceptable number of memories,
the methods can also be used in other platforms, such as multi-core
CPUs.
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