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Image Correspondence With CUR Decomposition-
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Abstract— Establishing correspondence between pictorial
descriptions of two images is an important task and can be
treated as graph matching problem. However, the process of
extracting a favourable graph structure from raw images for
matching is influenced by cluttered backgrounds and defor-
mations, which may result in the abundance of noisy graph
structures. This paper addresses the problem of point set
correspondence and presents a robust graph matching method
which recovers the correspondence matches among the graph
nodes in a CUR based factorization framework. The graph
representation in terms of CUR, inherently preserves the actual
nodes connection in sparse manner, this particularly renders
the complex space-time realization of affinities among graph
nodes. The reformulation of graph matching in terms of small
CUR factorization matrices, allows to compute and relax the
partially observed graphs, without observing the whole large-
scale graph matrix. In particular, we propose two variants of this
approach, first, approximating the matching matrix from small
CUR observed graph structure, and second, completing the graph
structure with higher order CUR form to find correspondence.
The CUR based matching algorithms are realized by computing
set of compatibility coefficients from pairwise matching graphs
and further conducting the probability relaxation procedure to
find the matching confidences among nodes. Experiments and
analysis on synthetic and natural images dataset prove the effec-
tiveness of proposed methods against state-of-the-art methods.
We also explore CUR matching for non-rigid moving object in a
video sequence to demonstrate the potential application of graph
matching to video analysis.

Index Terms— Image correspondence, graph matching,
CUR decomposition, non-rigid object matching.

I. INTRODUCTION

ESTABLISHING correspondence among visual features
in two images is critical for many applications, such

as object matching and retrieval, action recognition, 2D and
3D image registration, and video analysis [1]–[4]. In a
correspondence problem, it is generally assumed that key
scene points are observable in images. The geometric struc-
ture in one image scene can be therefore correspondingly
referred to other scene, resulting in matching key points along
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Fig. 1. An illustration of matching pair of human images having similar
actions, with 6 and 7 features respectively. Compatibility coefficient matrix
and its sampled version are shown below (a) represents bidirectional view
of sampled edges, (b) Actual matrix, (c) represents the factorization in terms
of CUR, sampling edges of graph 1, graph,2 and both along with relaxation
labelling, (d) final assignment matrix.

with deformations. The matching task is usually carried on
geometric constraints over target space to find the best match
by preserving the rich similarity measure.

For rigid point set matching, an estimation based framework
such as iterative close point matching (ICP) [4] is employed
to carry out the suitable correspondence among features.
ICP algorithm is amongst the popular heuristic approaches,
which assigns the correspondence by utilizing binary values,
but the method is constrained to small scale planar defor-
mations only. In contrast, Graph Matching (GM) [5]–[9]
are effective to solve correspondence problems in images
even for substantial deformations, as the information content
from graph vertices and edges are strong enough to relate
several objects in images. For example, the pair of images
shown in Fig. 1 illustrates the matching of two humans with
different pose and view geometry. The feature descriptor,
in this case might be unsuitable to describe the correspondence
relationship among them due to the similarities among nodes.
However, graph matching with pair-wise relational information
can be more effective under this situation. For example, dis-
tance and orientation coefficients can be used as scores among
nodes in relation to the neighborhood to express symmetry.

Noteworthy, the underlying assumption of this correspon-
dence geometrical information is based on whole affinity
matches, and is achieved before modelling. However, many
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real applications implicitly relies on the prior node infor-
mation. For example, feature point matching supposes the
candidate points available from feature point extractor, but
these unevaluated facts of extractor cannot guarantee the
reliable matching. The assumption of initial setting potentially
ignores noise and redundancy in nodes, edges or triangles
(analogous to point-wise, pair-wise, triangles-wise). Therefore,
initial assumption inevitably mixes the dummy nodes, deviated
lines, even ambiguous combinations in assignment space.
Furthermore, the issue in solving GM problem is the growth of
node arrangement as a factorial paramount number with the
graph dimension [10]. Under this scenario, the redundancy
and computational complexity for pair-wise GM becomes
intractable as the number of feature points increases [11], [12].
Alternate approaches are developed to overcome this problem
by making a decent trade-off between computation complexity
and accuracy.

Graph Laplacian or adjacency matrix in terms of eigen
representation are adopted as an alternate in spectral methods,
which makes them invariant subject to node arrangement [13].
For instance, eigen vectors as a global feature for point
patterns are presented in [14] whereas in [6] eigen vectors are
treated as correspondence indicators in matching. The eigen
decompositions in the presence of positional jitter are likely
to produce errors while computing eigen vectors whereas
existence of outliers creates an additional challenge by making
the size of graph size different. The proposed solutions to these
issues truncated the eigenvectors to make them comparable,
which later result in ineffectiveness of spectral representation.

Learning the compact affinity matrix of graph have been
investigated frequently to realize robust feature correspon-
dence [15]–[19]. The spectral matching method presented
in [6] and local sparse models presented in [7] relaxed one to
one matching constraint and later recovered back through post
processing procedure. An interesting aspect of graph matching
in terms of factorization was presented in [16]. The affinity
matrix of graph was factorized into Kronecker product of
smaller matrices that captures the affinities between the nodes
and edges, and later convex-concave relaxation was carried
out in path following fashion. Another method [15] exploit the
matrix decomposition to extract the common inliers and their
synchronized permutations from disordered weighted graphs
in the presence of deformation and outliers.

Despite several attempts to realize GM in terms of decom-
positions [17], [18], [20], [21], the robustness and viability
of many algorithms remain critical. The key step in graph
structure analysis is to construct a compressed representation
of affinity matrix that may be lighter to analyse. This is
achieved by truncating at some value in larger part to yield
best rank-k approximation of matrix when measured against
any unitarily invariant matrix norm. Unfortunately, the basis
vector-based approximations are notably difficult to interpret
in terms of the actual graph structure, i.e. actual nodes and
edges. In other words, the exact relaxation-based solutions of
graph matching problem ignore the scalability.

Consequently, the corresponding geometrical structures
could be naturally treated as an incomplete structure according
to above noisy challenges. This is the main intuition that led

us to introduce the approximation by randomization method
rather than full or complete structure in graph. Here, the glob-
ally optimal solution cannot be easily achieved by several
factors. Of all that, the most important barrier is the scale of
the huge searching space. Based on incomplete assumption,
we exploit a probabilistic model over matching space to cope
with graph matching problem. In this case, we intuitively
exploit the CUR decomposition method, which are relatively
contemporary interpolative approaches and can deliver low-
rank approximations in terms of actual graph connections
that are more amenable to interpret as compared to linear
combinations.

In this paper, we present a CUR decomposition based graph
matching framework for image correspondence problems. The
key idea behind the proposed method is to carefully sample
the pairwise affinity graph matrix by keeping all the nodes of
graph and without touching the whole graph matrix. The fact
can be visualized in Figs. 1(a) to 1(d). The two-dimensional
sampling results into a set of small matrices, i.e. C, U and R
that capture the individual local graph structure, which offers
several advantages over traditional low rank approximations in
terms of computational complexity, storage and interpretation.
For instance, to match a large number of points, the size
of graph matrix tends to increase significantly. In this case,
the sampled matrices in terms of C, U and R, are much
easier to compute, store and process rather than accessing the
whole larger affinity matrix with all possible combinations.
As the affinity matrix is sparse and non-negative, the small
factor matrices tend to share the similar properties. This makes
them suitable for a label assignment procedure to reduce local
ambiguities and achieve global consistency. Results into a set
of small matrices, i.e. C, U and R that capture the individual
local graph structure, which offers several advantages over
traditional low rank approximations in terms of computational
complexity, storage and interpretation. For instance, to match
a large number of points, the size of graph matrix tends to
increase significantly. In this case, the sampled matrices in
terms of C, U and R, are much easier to compute, store
and process rather than accessing the whole larger affinity
matrix with all possible combinations. As the affinity matrix
is sparse and non-negative, the small factor matrices tend to
share the similar properties. This makes them suitable for a
label assignment procedure to reduce local ambiguities and
achieve global consistency.

Contributions: The main contributions of this work pre-
sented on graph matching for image correspondence can be
summarized as follows:

1: To address the scalability issues related to graph match-
ing, we propose to perform a bidirectional uniform graph
matrix sampling, along rows and columns. We present the
low-rank CUR decomposition for graphs and then relate it
to solve the correspondence problem of matching images.

2: We propose two different variants of our approach related
to graph decomposition which include (a) direct low-rank
representation, and, (b) recovered low-rank representa-
tion. For direct low-rank representation, we use uniform
sampling on compatibility coefficients scores matrix and
reformulated the relaxation labelling that require only
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a small number of combinations to process. In recovered
low-rank representation, we extend the CUR decomposi-
tion to a tensor form and within the relaxation framework.
We recover the tensor slices from its sampled low-rank
components. The scheme is proved to be memory efficient
as well as robust against deformations.

3: Through several experiments on synthetic and real data
we validate the effectiveness of our proposed methodol-
ogy, while addressing the aforementioned shortcomings.

II. RELATED WORKS

A. GM and Factorization

In graph matching, several pioneering works focused on
heuristics and approximation based strategies. In general,
the combinative characteristic of GM demands approximate
solutions, as the global optimum can hardly be obtained. In this
section, we will discuss selected approaches related to our
research.

In context of graph matching, an incomplete list of classical
approaches can be categorizes in to spectral methods [6],
probabilistic approaches [9], tree search based methods or path
following methods [16], [22]. Spectral methods tend to
study the similarities among the spectra related to adjacency
matrix or Laplacian matrix of graph, whereas the probabilistic
methods conduct probability distributions that define mappings
and then optimize over several constraints to yield refined
match. In comparison the tree-search based methods usually
have higher computational cost, generally of the exponential
order, as they carry out sequential procedures of compatibility
belonging to local graph structures.

Learning the pair-wise affinity matrix form graph and
devising improved approximations of graph structure dual
decomposition framework was followed in [17] to achieve the
lower-bound on energy, which addressed dual of the matching
problem [23]. However, the encoding may be susceptible to
noise, making it sensitive to scaling and rotation changes.
To overcome these shortcomings, the higher order exten-
sion was presented [10], [23], which encodes the geometric
structure of graph in tensor form. However, any change in
order of relations produced an enormous amount of data
computation, therefore the method is limited only to sparse
structures with third order only. The performance in this case is
also dependent on the initial graph construction. Among these
approaches, the aspect of graph matching via graph decompo-
sition was better addressed in [16], in which factorization of
affinity matrix was dealt directly. The smaller matrices were
further relaxed through convex-concave procedure using path-
following approaches.

Aiming to construct a compact parts-based representation
from graph, non-negative matrix factorizations (NMF) gained
much popularity in graph matching [20], [24]. Non-negative
Orthogonal Graph matching (NOGM) presented in [20], which
encoded the discrete mapping constraints of matching into
nonnegative orthogonal constraints and then final solution is
achieved through multiplicative updated fashion. The sparse
solution from NNMF in this case is much easier to incorpo-
rate in optimization process. However, it fails to extract the

intrinsic geometric and discriminating structure of actual data
space, as the learning is carried out in Euclidean space [25].

Deep learning for graph matching is introduced in [26]
to extract the image features using the convolution neural
network (CNN) and learning the matching function of sim-
ilarity, whereas inverse gradient propagation and standard
CNN gradient optimization methods were adopted to achieve
end-to-end training in CNN architecture. The method benefit-
ted from the potential of deep learning to extract the key visual
features in images instead of handcrafted features such as SIFT
and then similarity matrix is constructed. The matrix is further
passed to existing GM algorithm, for which the training loss
is computed along with matched supervisory information. The
process still combines the information of all nodes and edges
to construct the graph and therefore overlook the sparsity of
the affinity matrix.

Moreover, the eigen decomposition of the affinity matrix
was used that requires the whole affinity matrix and basis
vector approximations are notably difficult to interpret in
terms of the actual graph structure. On contrary the proposed
CUR based method is based on sampling the actual graph
structure from affinity matrix and provides a sketch that is
beneficial in in terms of interpretability and robustness against
non-rigid nature of graph. The direct representation of data in
terms of sampled factor matrices in CUR representation can
be suitable in network compression such as weight quantiza-
tion and weight sampling from convolution layers and fully
connected layers for compact representations of CNN layers.

B. CUR Factorization

Nevertheless, interesting results can be seen in aforemen-
tioned literature, particularly in image matching problems,
as they strictly emphasize on improving optimization strate-
gies, but does not address the scalability issues in principle
way, i.e., how to construct, store and process the large graphs
over points in images. In contrast to these methods, our
approach directly establishes factored matrices while par-
tially observing the graph in randomized manner using the
CUR decomposition.

As an alternate to the SVD type approximation,
CUR decomposition is well acknowledged in data science
to approximate the massive matrices in less memory and
time requirements [27]–[30]. The author in [29] discussed the
complexities related to computing the low rank structure of
matrix in terms of CUR decomposition. The most popular
Nystrom method to construct the matrix sketch using the uni-
form sampling and leverage score sampling [31] are commonly
employed. In [29] the author discussed an effective way to
compute the CUR decomposition as compared to Nystrom
method. There are several recent papers of interest that shows
more efficient ways to compute the CUR decompositions and
its higher order generalizations [32], [33]. However, no graph
matching aspect is involved.

The literature discussed above considered the numerical
aspect of CUR decomposition, different problem than graph
matching. Nevertheless, it does provide the underlying prin-
ciple to conduct CUR decomposition in a much faster way.
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In this paper, we followed the similar formulation as described
in [29] to compute CUR decomposition and proposed a
direct graph matching strategy that combines the compatibility
matrix sketch from graph using the uniform sampling between
edges. The factorization process involved here provides two
key advantages as compared to previous methods. Firstly,
the computation of large compatibility matrix is no longer
necessary, instead small factor matrices are generated using
partially observing the graph. This allows lower computation
and memory requirements as compared to standard eigen
value decomposition approaches, thus the problem of matrix
inversion in case of large number of feature points can be
dealt more efficiently. Secondly, the small sized actual entries
present in factor matrices represent the actual graph structure,
which enables the optimization process to converge more
rapidly with few iterations.

III. PROBLEM STATEMENT

Given two graphs G1 = (V Q , E Q) and G2 = (V Q
′, E Q

′)
from feature extracted images. Where VQ = {q1, q2, . . . , qn}
and VQ ′ = {q ′1, q ′2, . . . , qm′ } are the sets of nodes, whereas
E ′Q and EQ

′ are the sets of edges. The task of image
correspondence via graph matching is to obtain a mapping :
VQ → VQ

′, such that the geometric structure between two
graphs is retained. The graph structure can be denoted as
S = {S1, S2, . . . , Sl } ∈ G1 and S′ = {S′1, S′2, . . . , S′l } ∈ G2
respectively. Here l represents the number of structures in
graphs such that for any l ≤ θ ≤ l,∈ S or Sθ ′ ∈ S′ represents
the points or edges as:

Sθ = {qθ1, qθ2, . . . , qθ t } and Sθ ′ = {qθ1′, qθ2′, . . . , qθ t ′}
where l ≤ t ≤ T (T = min{m, n}) represents the dimension
of graph structure and possible graph structure in terms of
patterns can be interpreted as 1 ≤ l ≤ (T

t

)
, qθT and q ′θT for

1 ≤ T ≤ t are the spatial points in both graphs VQ and VQ ′
respectively.

Considering FSθ and FSθ ′ be features representing points
from selected graph structure Sθ ∈ G1 and Sθ ′ ∈ G2,
respectively.

Score =
∑

(qθ,q ′θT )∈c

= f (FSθ , FS ′θ ), (1)

where the target is to obtain the set of correspondence between
graphs as = {(qθT , q ′θT )|qθT ∈ VQ corresponding to q ′θT ∈
VQ ′ , 1 ≤ θ ≤ l, 1 ≤ T ≤ t }. Usually the f (FSθ , FS ′θ ) are
expressed in terms of distance measure or on compatibility
scale, the cost function in former case becomes a minimization
problem whereas in later case set as maximization problem.
The final matching assignment t in terms of indicator vector
takes the form as:

x(a) =
{

1, if a = (qθT , q ′θT ) ∈ C

0, otherwise
(2)

where (qθT , q ′θT ) = 1 represents that node qθT matches
node q ′θT . The final assignment matrix can be discretized
to [0 1]. Suppose the pair-wise case, the minimizing objective
function Eq. (1) have a same effect with matching probability.
In general, the matching problem can be solved by maximizing

the probability. In discrete domain, the intuitional solution is
provided by maximizing the probability of assignment matrix
and can be defined on:

X̂ = arg max
X
(score) (3)

The task here is to maximize the number of matched edges
between two graphs. The correspondence between sets of
edges is represented by a compatibility matrix f and each
element of f has a continuous value i.e [0 1]. The matching
is achieved by maximizing the score function by probabil-
ity relaxation labelling (PRL) method, which is an iterative
process to reduce ambiguities in assignment labels. The set
of matching probabilities are assigned initially and are then
updated by PRL process. The overall task is to achieve a
maximized matching score, under the relaxed condition of
probability as PqθT q ′θT ∈ [0,1]. At the end of PRL process,
it is expected that each node will have one unambiguous
probability that constructs the final matching matrix.

The optimization problem in Eq. (3) is NP-hard and there
exists variety of approaches [9], [22], [23] to solve it. In fact,
it becomes more critical when the graph size is relatively
large, and the factorial growth of graph structure makes it
practically more challenging. The section below describes
the proposed randomized approach to deal with the issue
and realize the solution based on CUR decomposition with
probability relaxation labelling.

IV. PROPOSED GM FRAMEWORK

We solve the image correspondence problem by computing
the set of compatibility coefficients from the pair-wise graph
representing the feature points. Once the compatibility scores
are computed from graphs, it is then passed to the relaxation
labelling process to solve the optimization problem. The
factorial indexed terms involved in compatibility matrix and
an exhaustive iterative search in this case is computationally
intractable even for moderate sized graphs. Thus, we propose
an efficient CUR decomposition based strategy to compute and
solve the relaxation problem in following key steps:

• Compute and store only the partially observed graph
structure in terms of factors matrices to realize compati-
bility scores.

• Search the relaxation labelling process over small low
rank graph structures to generate the assignment matrix.
These following subsections elaborate the points.

A. Compatibility Measures

The rich contextual information present in the graph struc-
tures can be described in terms of compatibility coeffi-
cients [9], [34]. Distance among pairs of points is one of
the most commonly used measure to describe the similarity,
but for deformable objects this might not be suitable alone.
Whereas the angle information sufficiently preserves the topol-
ogy of shapes, even the points are distorted, as the neigh-
borhood structure of the points is retained. Based on these
assumptions we used both distance and angle information
among pairwise graph structure to encode the compatibility
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coefficient information. Considering the nodes of graphs with
single indexing to represent the points in two sets, the graph
structure can be represented in terms of points as:

qi ∈ VQ (i = 1, 2, 3 . . . , n) and q ′λ ∈ V ′Q (λ = 1, 2,
3 . . . ,m) from G1 and G2 respectively.

The overall compatibility measure of pair-wise graph struc-
ture is represented by a coefficient Cqi q j (q

′
λ, q
′
η) where the-

subscript terms represents the pairs in object set whereas the
terms in bracket corresponds to target set, such as: (i, j =
1, 2, 3 . . . , n) and (λ, η = 1, 2, 3 . . . ,m) Each coefficient
represents the potential to match a pair a = (qi , q ′λ) with pair
b = (q ′j , q ′η) The Euclidean distance compatibility coefficient
can be given by:

Dqiq j (q
′
λ, q
′
η) = 1− |d(qi , q j )− d(q ′λ, q ′η)

d(qi , q j )+ d(q ′λ, q ′η)
| (4)

where d(qi , q j ) is the distance between pairs qi and q j

of VQ whereas d(q ′λ, q ′η) is the distance between pairs q ′λ
and q ′η of V ′Q . The value of coefficient lies in the range
from 0 to 1 depending upon how closely the pairs are
similar, e.g, Dqiq j (q ′λ, q ′η) is 1, if d(qi , q j ) and d(q ′λ, q ′η)
are equal alternatively close to zero when when d(qi , q j ) �
d(q ′λ, q ′η) or d(qi , q j ) � d(q ′λ, q ′η) The angle coefficient is
computed from each pairs of points in terms of the dot product
as

Aqiq j (q
′
λ, q
′
η) =

(
1+

−−→q1qj.
−−→
q′λq′η

‖−−→q1qj‖.‖−−→q′λq′η‖

)
/2 (5)

where −−→q1 qj.
−−→
q′λq′η represents the dot product between two vec-

tors and the amplitude scale is denoted by ‖−−→q1 qj‖ and ‖−−→q′λq′η‖.
For the pair of vectors −−→q1 qj and

−−→
q′λq′η the orientation angle θ ∈

[0, π] then the corresponding coefficient Aqiq j (q ′λ, q ′η) ranges

between 1 and 0 respectively. The above explained coefficients
based on distance and orientation can be combined to form a
resultant position coefficient as:

Cqiq j (q
′
λ, q
′
η) = Aqiq j (q

′
λ, q
′
η).Dqiq j (q

′
λ, q
′
η) (6)

The resultant coefficient determines the overall compatibility
of matching any point qi with q ′λ and q j with q ′η along with
value also ranging between 0 and 1.

B. Relaxation Labelling

The optimization problem presented in Eq. (3) can be
dealt with the relaxation labelling procedure incorporating the
position compatibility coefficient. To serve the purpose of
graph matching, the relaxation labelling procedure maps each
point from an initial set to target set while iteratively reduc-
ing the ambiguities in assignment labels, therefore achieves
the global consistency [28]. The procedure is initialized by
assigning an initial matching probability and is then updated
iteratively, based on the support function. The subsequent
process assigns or updates the matching probability that max-
imizes the cost function. It is therefore assumed to have an
explicit matching probability in assignment matrix at the end

Fig. 2. The description of graph structure dimension. When dimension is 1,
the process becomes point to point matching, matching.

of procedure, where no further improvement can be seen
afterwards.

Considering pairwise graph matching the structure dimen-
sion is set to 2 and 1 ≤ θ ≤ l the graph structure Sθ =
{qθ1, qθ 2} ∈ VQ must correspond to the labels in V ′Q as
S′θ = {q ′θ 1, q ′θ 2} ∈ VQ ′ . Referring to Fig. 2, the task becomes
matching qq1 with q ′θ1 and qq2 with q ′θ2 with corresponding
labels. The prior probability for matching is set to initialize the
relaxation process. For q1 ∈ VQ , the prior probability can be
stated as:p(0)

qi→q ′λ
(0 ≤ p(0)

qi→q ′λ
≤ 1) to match corresponding

label q ′λ ∈ VQ ′(0 ≤ λ ≤ m) while satisfying the unity sum
criterion as:

∑m
λ=1 p(0)

qi→q ′λ
= 1.

For the compatibility coefficient Cqiq j (q ′λ, q ′η), it follows the

high matching probability among qiq j and q ′λq ′η if the score
is closer to one and incompatible if it is closer to zero. There
is the support function Tqi , derived from the compatibility
coefficient and weight factor of initialized probability, that
represents the scale of each q j cpmbined with qi for label q ′λ.

Tqj ←
∑

j

∑
η

Cqiq j (q
′
λ, q
′
η)p

(0)
qi→q ′λ

(7)

where qi , q j ∈ VQ and q ′λ, q ′η ∈ VQ ′ such that (1 ≤ i,
j ≤ n, 1 ≤ λ, η ≤ m). The normalization coefficient dqiq j

is required in the relaxation process to obtain the precise
probability, such that

∑n
j=1 dqiq j = 1. The support function

provides matching probability information that requires further
normalization and is given by:

p(1)qi→q ′λ
← Tqj∑m

j=1 dqiq j
(8)

p(1)
qi→q ′λ

reveals the preliminary matching matrix between VQ

and VQ ′ in terms of probabilities:

M1
qi→q ′λ

=
⎡
⎢⎣

P1
1→1 . . . P1

1→n
...

. . .
...

P1
m→1 . . . P1

m→n

⎤
⎥⎦ (9)

where M1
qi→q ′λ

probability matching matrix that represents the
soft matching among points. In order to obtain the global
consistency, the relaxation labelling process is carried out
iteratively that updates the matching such that each element
in M1

qi→q ′λ
becomes closer to 0 or 1. The iteration procedure
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can be given by the following equations:

ψk−1
qi→q ′λ

=
∑

j

∑
η

Cqiq j (q
′
λ, q
′
η)p

k−1
qi→q ′λ

(10)

pk
qi→q ′λ

=
pk−1

qi→q ′λ
ψk−1

qi→q ′λ∑
j pk−1

qi→q ′λ
ψk−1

qi→q ′λ

(11)

pk
qi→q ′λ

provides the refined probability of matching point qi

with q ′λ, after kiterations, where the matching probability
of each correspondence is linked with probabilities of other
points. As the iteration progresses, the value of probability
becomes higher for those points where it is also supported by
other points combinations and approaches to zero otherwise.

C. CUR Decomposition for GM

Matrix decomposition provides an efficient way to solve the
problem by decomposing it into low rank structures that can be
processed separately, later resuming the outcomes approaching
to produce the global solution corresponding to original raw-
matrix. For graph matching problems, decomposition based
methods such as dual decomposition [17], non-negative matrix
factorization [20], [24] are applied to factorize the original
graph into less complex small scale subgraphs, and then
combine the subgraph solution.

For the conventional decomposition methods, it is required
to solve the matrix inversion of size at least square times the
number of samples. In this case the low rank computation
still costs polynomial order time, which makes them restricted
to small scale graphs only. Therefore, traditional approaches
to decompose graph only work for limited set of energy
functions that have a relatively small graph connection. For
image correspondence problems it is required to perform graph
matching on large number of points as images are quite rich
in terms of contextual information.

1) Computing CUR Decomposition: Different from the
graph decomposition perspective, we propose to address these
limitations by introducing the graph sketching, in fact, matrix
sketching [28], [29], to deal graph matching in better space
time complexities [27]. The compatibility matrices can be
efficiently computed and represented by their sketches in
terms of product of matrices.The small approximated matrices
preserve most of the characteristics of original matrices in
terms of sparsity and actual geometric graph connections
(edges). To make this work self-contained, we first present the
prototype CUR matrix decomposition followed by advanced
form and then link this formulation to solve the GM.

For an arbitrary m×n n rectangular matrix A, where m and
n can be the aforementioned number of points in graphs. It is
more feasible to sample the c columns of A, with sampling
indices Sc to generate C = ASC ∈ Rm×c at the same time
sample r rows of A, with sampling SR to produce R = ASR ∈
Rr×n , and interestingly sampling in both directions to yield
the intersection matrix U∗ ∈ Rc×r by solving the minimization
problem:

U∗ = arg min
U
‖A − CU R‖2F = C+AR+ (12)

Fig. 3. An illustration of CUR decomposition on face image taken from [35]
and its reconstruction using different numbers of selected rows and columns.

The low-rank approximation A ≈ CU R is termed as
CUR decomposition [30]. In order to further demonstrate CUR
factorization, consider Fig 3. as an example of a face image
and its factorized parts. The purpose of CUR decomposition
is to find a sub-image C (subset of columns of actual image),
sub-image R (subset of rows of actual image), and compute
U using the intersection of rows and columns, such that actual
image can be reconstructed within the relative error.

Algorithm 1 CUR-Matching Matrix Approximation (MMA)
Input : Two graphs VQ(qi ∈ VQ : i = 1, 2, 3 . . . , n)
and VQ ′(q ′λ ∈ VQ ′ : λ = 1, 2, 3 . . . ,m)
(2) Targeted number of rows c and column r
1: Compute partially observed compatibility coefficient
matrices Cqiq j (q ′λ, q ′η)SC , SR, SC,R

2: Initialize pqi→q ′λ with prior probability
2: Repeat for CSC,RS R and USC S R

3:For each point (qi , q j )

4: ψk−1
qi→q ′λ

=∑
j

∑
η Cqiq j (q ′λ, q ′η)p

(k−1)
qi→q ′λ

5: p(k)qi→q ′λ
=

pk−1
qi→q′λ

ψk−1
qi→q′λ∑

j pk−1
qi→q′λ

ψk−1
qi→q′λ

6: end for
5: Until Convergence
6: Approximate ψqi→q ′λ = CSCUSC S R

7:Output: Matching matrix X ∈ Rm×n

The small matrices hold direct representation from actual
matrix, being very useful in solving assignment problem using
the relaxation labelling, as the indices of sampled rows and
columns are available ahead. For this prototype model the
computation of sampled compatibility matrices might not be
much advantageous, because U∗ still needs to access every
index of graph structure i.e. matrix A. Lately the faster
version of CUR decomposition is proposed in [29] which
differs in terms of forming the U∗ matrix more efficiently.
The column selection matrices PR ∈ Rn×pr and PC ∈
Rm×pc are generated through the sampled indices pr and pc

with pc = pr = O(c + r), so that enough approximation
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is achieved.

U∼ = arg min
U
‖PT

C APR − PT
C CU RPR‖2F

= (PT
C C)+(PT

C APR)(RPR)
+ (13)

The U≈ here require PT
C APR entries from large A instead

of accessing the full matrix, as in the case of prototype model.
Using the above formulation to compute the U≈ matrix allows
the computation of large compatibility matrix in linear time
with scale of graph. This feature allows the relaxation labelling
optimization process to converge rapidly even in the presence
of large-scale graphs as compared to baseline where the global
solution is more challenging to achieve.

2) CUR for Matching Matrix Approximation (CURMMA):
From graph matching perspective, the CUR decomposition
first allows to compute only the sampled compatibility coef-
ficients. Empirically, the sampling indices when generated
through uniform sampling process behaves nearly like the
well-known leverage score sampling matrices. Leverage score
based sampling is expensive in terms of computing the SVD
of whole dataset, whereas uniform sampling avoids com-
puting every entry of matrix. The performance of uniform
sampling is data dependent. However, for uniform leverage
scores or small coherence matrices, uniform sampling provides
a better sketch [31]. In our experiments, we used uniform
sampling method explained in [29], to first oversample the
entries and then reducing them with mutual repetition. The
Eq. (3), can be rewritten by sampled factored matrices to
approximate the solution as:

X̂ = arg max
X

∑
(qθT ,q

′
θT
)∈C

f (CSC ,USC SR ,RSR ) (14)

Given the number of selected rows r and columns c,
we therefore computed three small sampled compatibility pair-
wise matrices, where sampled distance and angle coefficient
are computed initially to produce the combined compatibility
factor matrices as:

CSC = Cqiq j (q
′
λ, q
′
η)SC ∈ Rmn×mc

RSR = Cqiq j (q
′
λ, q
′
η)SR ∈ Rrn×mn , and

USC SR = (PT
C CSC)

+(PT
C Cqiq j (q

′
λ, q
′
η)PR)RS R PR)

+ ∈ Rmc×rn

Here we make a key observation about sampling the com-
patibility matrix, which can be treated as reducing the geo-
metric combinations, but the number of graph nodes remains
unchanged. The matric CSC intuitively represents the matching
lines from objective graph to all nodes but few combina-
tions which can be treated as reference landmark points for
matching. Similarly, RSC matrix represents the all nodes with
few selected combinations to all target combination points,
whereas the U serves the purpose of scaling the R matrix,
such that the product of all approximates the all points to all
point combination coefficients.

The above formulation described above for probability
relaxation labelling process cannot be directly enforced on
the sampling matrices, as the whole searching space is now
altered. In this case the above relaxation labelling and update

equations can be modified to replace the existing procedure
as:

ψk−1
qi→q ′λ

SC,R =
c∑

j=1

r∑
η

Cqiq j =(q ′λ, q ′η)SC,R P
(k−1)SC,R

qi→q ′λ
(15)

Pk
qi→q ′λ

SC,R =
pk−1

qi→q ′λ
ψk−1

qi→q ′λ
SC,R∑

j pk−1
qi→q ′λ

ψk−1
qi→q ′λ

SC,R
(16)

The initial probability matrix is thus initialized accordingly
with the newly constructed sampled compatibility scores,
and therefore the labelling process computes support for
match only for the designated branches. The overall matching
matrix can be approximated by considering the fractional
matching matrices in terms of p(k)qi→q ′λ

, CSC , p(k)qi→q ′λ
RS R and

p(k)
qi→q ′λ

USC SR , that present the fraction of entire matching
space.

p(k)
qi→q ′λ

= p(k)
qi→q ′λ

,CSC p(k)
qi→q ′λ

USC SR p(k)
qi→q ′λ

RS R (17)

The above equation refers to the approximate solution
to the large assignment matrix in terms of small fractional
matched matrices. The above procedure to approximate the
matching solution significantly reduces the complexity by lim-
iting the search space and facilitates the global convergence.
The matching matrix approximation assigns the estimated
matching probability to every point corresponding to the target
point.

Algorithm 2 CUR-Tensor Completion and Matching (TCM)
Input : Two graphs VQ and VQ ′
(2) Targeted number of selected branches K and L
1: Compute partially observed tensor W and core tensor:
U = W ×1 W+(1) ×2 W+(2) ×3 W+(3)
2: Construct fibre matrices C1,C2,C3, and C4
3: Initialize pqi→q ′λ
4: Repeat
5:For each point (qi , q j )
6: Reconstruct tensor slice:

Yi j = U ×1 C1i ×2 C2 j ×3 C3 ×4 C4

7: ψk−1
qi→q ′λ

=∑
j

∑
η Yi j p(k−1)

qi→q ′λ

8: p(k)qi→q ′λ
=

pk−1
qi→q′λ

ψk−1
qi→q′λ∑

j pk−1
qi→q′λ

ψk−1
qi→q′λ

9: end for
5: Until Convergence
7: Output: Assignment matrix X ∈ Rm×n

3) CUR for Tensor Completion and Matching (CURTCM):
The expression that arise from compatibility coefficient can be
better understood using the multiway array or tensor, where
the pairwise information of points is kept in each mode.
For instance matching pairs a = (qi , q ′λ) with b = (q j , q ′η)
having a compatibility score stored in Cqiq j = (q ′λ, q ′η),
can be alternately expressed in a 4th order tensor form as
Y ∈ RI×J×K×L , where I, J, K and L are the corresponding
dimensions in each mode. One approach to render the problem
of graph matching more tractable is to first approximate the
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large compatibility tensor in terms of its mode matrices and
core tensor as a partially observed incomplete tensor, rather
than realizing a single large coefficient tensor. Later the final
solution can be realized by reconstructing the tensor fibers for
probability relaxation labelling in iterative manner.

Within the procedure only few branches of graphs are
required to estimate the tensor and later CUR factorization
can be used to approximate the large graph. Therefore, in the
current scenario we propose to address the graph matching
problem with compatibility tensor completion problem. It is
assumed that, sampling only the branches form two graphs not
reduce the computation cost and helps to avoid the redundant
pairs, but also can overcome the effect of outliers while
dealing with deformable graphs. The steps below present
the multilinear extension of CUR decomposition for Graph
matching problem along with relaxation labelling.

For the tensor CUR based graph completion and matching,
the expression that arises form Eq. (4) by incorporating the
multilinear extension of CUR decomposition, consists of mode
matrices and a core tensor as: A1 ∈ RI×R1 , A1 ∈ RI×R1 ,
A1 ∈ RI×R1 tensor A1 ∈ RI×R1 , such that:

Y = G ×1 A1 ×2 A2 ×3 A3 ×4 A4 (18)

where,R1, R2, R3 and R4 are the number of selected indices
corresponding to each dimension which equally resembles
with the variables c and r in matrix case. For each dimen-
sion of tensor the selected indices sets can be given by:
I = [i1, i2, i3 . . . iR1], J = [ j1, j2, j3 . . . jR2], K =
[k1, k2, k3 . . . kR3], L = [l1, l2, l3 . . . lR4] where, the indices
I, J, K and L resembles with the pr and pc in matrix case.
The unfolding matrices in each mode resulting from selected
indices can be used to construct the core tensor U , as

U = W ×1 W+(1) ×2 W+(2) ×2 W+(3) (19)

where, W = Y (I : J : K : L) is the intersection tensor
computed through the sampling indices. The original tensor
can be approximated by using the Tucker representation as:

Y = U ×1 C1 ×2 C2 ×3 C3 ×4 C4 (20)

where C1 ∈ RI×R2 R3 R4 ,C2 ∈ RJ×R2 R3 R4,C3 ∈ RK×R2 R3 R4 ,
C4 ∈ RL×R2 R3 R4 and are formed by partially observing the
coefficient tensor as C1 = Y(1)(:, J : K : L), C2 = Y(3)(:, I :
J : L), C3 = Y(1)(:, J : K : L) and C4 = Y(4)(:, I : J : K ).

This arrangement makes the sampling of graph connections
more understandable, while keeping the first two dimension
of tensor unchanged, and it is possible to reduce the graph
branches. The graph structure in terms of compatibility coef-
ficient in this case represents the small sampled mode matrices
and subtensor. In order to achieve the matching matrix more
efficiently, only the required tensor slice is reconstructed in
relaxation labelling, such that each iteration goes on single
reconstructed tensor slice, while the remaining tensor remains
factorized. The algorithm is summarized in Algorithm 2.

4) Complexity: The proposed matching method is motivated
by the random selection of rows and columns (graph edges).
Specifically, the proposed method is only O(c + r) space
complexity rather than o(m + n), from initial affinity matrix,

Fig. 4. The permutation matrix resulting from the baseline PRL and proposed
methods CURMMA, CURTCM for a number of iteration are shown along
with the size of compatibility matrix for relaxation labelling.

where, c � m; r � n. In addition, the time complexity of
CURMMA is o(m ∗ n ∗ c ∗ r), which is much less than the
baseline, i.e o(m ∗ n ∗ c ∗ r) = o(m2 ∗ n2).

5) Approximate Discrete Solution and Sparsity: In our dis-
cussion, we emphasise on two variants of proposed approach
in comparison to baseline method. As discussed earlier both
CURMMA and CURTSTM can produce the approximate
solution of relaxation labelling process. However, the major
advantage not only lies in the robustness against outliers due to
factorization but also can be seen in time consumption, sparsity
and convergence. Interestingly, the CUR decomposition based
approximate solution also converges to a local optimum with
majority of elements either close to zero or one. The fact
can be well understood by following example taken from
the house dataset, where two images are matched based on
their key points. The probability relaxation labelling process
on raw compatibility matrix (considering all combinations)
and the proposed methods CURMMA and CURTCM are
shown below along with the corresponding dimensions of
matrix (see Fig. 4). The convergence of the solution to local
optimum is still achievable by using the proposed methods
as the compatibility coefficients matrix retains their actual
interpretation of positive numeric values along with actual
graph edges. Moreover, the proposed methods can still return
the permutation matrix comparable or better than baseline
method while consuming only the partial structure of graph.
Fig. 4 is presented from a CMU house dataset sample for
illustration only. The matching lines corresponds to the geo-
metric correspondence links to the nodes of the target graph.
For PRL 900–900 matrix is required for pairwise matching
labels, where as CURMMA and CURTCM require less than
one third to produce better result and faster convergence.
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Fig. 5. The Sparsity comparison of the solution across the iterations in
probability relaxation labelling.

We also present the sparsity when solving for matching
correspondence for given point sets. Fig. 5 illustrates the
matching process of synthetic point dataset of 98 points
in 2D space. The sparsity with in the permutation matrix is
computed per iteration for proposed methods and it can be
seen that the CURTCM achieves relatively better or equivalent
sparsity as compared to baseline.

V. EXPERIMENT RESULTS AND ANALYSIS

In this section we evaluate the proposed method on several
matching tasks, using both standard synthetic datasets and
real-world images datasets. On real world images, the two
variants of proposed approach named as CUR based matching
matrix approximation (CURMMA) and CUR tensor based
completion and matching (CURTCM) along with baseline
probabilistic relaxation labelling (PRL) method are compared
with the recent state of the art GM algorithms including,
Spectral matching (SM) [6], the local sparse model match-
ing (LSM) [7], adaptive graph matching (ADM) [5] and
reweighted random walks matching algorithm (RRWM) [22].
The accuracy measure is adopted to evaluate the performance
of all graph matching methods, i.e., the number of accurately
detected matched pairs out of all available ground truth
matched pairs.

Experiments are conducted on core i7 system with 16 GB
memory. Our proposed methods, CURMMA and CURTCM
along with the baseline PRL are implemented on Matlab
environment, whereas SM, ADM, RRWM and LSM were
accessed through public implementations. In our experiments
we set the value of iteration to 40, whereas in CURMMA
and CURTCM the values of c, (rows value), r (column value)
and K, L are set empirically to 10% of the actual number
respectively. The parameter settings of other algorithms are
followed according to their studies.

A. Synthetic Dataset

The proposed method is first evaluated on the synthetic
dataset [21], which refers to the shape of fish in 2D points.
Each point set in the data set comprises of at least 98 points.
Fig. 6 top row is the sample chosen from the deformation case
which represents the matching by (a) PRL, (b) CURMMA and

Fig. 6. The Matching comparison of different algorithms on synthetic
dataset of 2D points, while considering number of factors such as noise,
graph size, outliers and deformations. Top figures show the typical scenario
of deformation (a) is baseline PRL, (b) is CUR-MMA and (c) is CURTCM.
blue lines indicate the mismatches.

(c) CURTCM. The proposed method clearly achieves much
better matching, as the blue line indicates the mismatching
compared with ground truth. The bottom rows of Fig. 6 indi-
cate the comparative performance against each challenging
scenarios, such as noise, non-rigid deformation, outliers and
problem size. The noise level of initial point set is varied from
0 to 0.2 with step size of 0.05 by adding Gaussian random
noise. However, problem size is varied by considering only
the subset of points by uniformly sampling the given and
target points along with ground truths. For cases with outliers,
point set ranging from 0 to 20 is produced by adding random
points with normal distribution and unit variance whereas in
deformation case, the target is deformed by adding non-rigid
transformation and is varied from the scale of 0.02 to 0.1.
The quantitative comparison reveals that the performance in
each case is better against other algorithms. CURMMA is
proved to be better in noise and problem size cases, where
similar to outliers and deformation cases CURTCM leads
the result. Interestingly as the number of points in problem
size grows the result becomes better for almost all methods.
This can be understood by the fact that, the sparseness of
the graph is not strong enough to construct the true graph
structure, whereas for sufficient number of points the ratio
of noisy points decreases which makes it less susceptible to
mismatches.

The effect of uniform sampling graph edges against the
matching accuracy is depicted in Fig. 8, which shows that
retaining 20 percent of edges can still produce better accuracy
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Fig. 7. The Comparison on House images sequence while matching initial
frame with subsequent frames. The figures on left indicates the proposed
method matching result on initial, middle and final frame.

Fig. 8. Effect of sampling rate on matching accuracy on synthetic dataset
using CUR-MMA (left) and CUR-TCM (right).

and comparatively better matching as the effect of outliers
in relaxation labelling is minimized that are responsible for
supporting the probability. Fig. 8 shows the matching accuracy
on synthetic dataset that contains both noise and deformation,
therefore retaining the minimum possible edges (20%-25%)
reduces the entire noisy search space to small apace to sup-
port probability and decreases the ambiguities among nodes,
therefore minimizes the effect of outliers that are responsible
for supporting the probability

B. House Dataset

For real world images, the first dataset we consider is the
CMU house dataset [16], [22], which is in fact the most
commonly used dataset for validating GM methods. The
dataset consists of 111 frames from a 3D rotating house shape
video sequence. Each frame in sequence is manually labelled
with 30 key points along with true matching result. As the
video progresses, task of matching becomes more challenging,
as the relative deformation varies intensely. We evaluated
our proposed method on this dataset on the scale of varying
relative frame number. The images shown in Fig. 7 represents
the matching samples from proposed method CURTCM. The
matching accuracy is 100% till frame number 90, afterward
1 out of 30 points is mismatched, whereas the graph below
demonstrates the comparison on varying frame baseline. It can
be observed that the RRWM in this dataset consistently
achieves highest matching without any mismatch. The pro-
posed CURTCM and CURMMA achieves second and third
highest accuracies as compared to the rest of methods.

A typical matching result of house image pair with corre-
sponding key points is shown in Fig. 10, column 1, whereas
the average accuracies are reported in Table I.

C. Cars-Motorbike and Caltech-101 Images Dataset

In this experiment we evaluated our proposed methods on
cars-motor bike dataset along with 30 pairs of Caltech-101

Fig. 9. Comparison of proposed method on Cars-motorbike dataset in the
presence of outliers. The figures on left indicates the matching images with
yellow lines indicating the outliers. Same points are drawn on 2D plane, which
clearly indicates the matching of outliers outside the region occupied by main
object.

Fig. 10. Comparison Matching results of different algorithms on house
sequence and Car-motorbike images. Top four algorithms are presented based
on high matching results. Correct and wrong matches are represented by the
magenta and blue colors respectively, whereas yellow lines indicate outliers.

images dataset presented in [35], which contains real images
of cars, motorbikes and several other objects in different
viewpoints, shapes, colour and background clutters. Images are
arranged in 30 pairs of cars and 20 pairs of bikes along with
number of extracted key points as inliers as well as outliers
representing the background environment. The ground truths
are available for inliers matching points. We compared the
performance of each algorithm following the similar settings
in [5], [22]. Fig. 9 shows the comparative results that are con-
ducted by matching the inliers in both images while increasing
the number of outliers from background, whereas the overall
average accuracies of dataset are reported in Table II.

It can be seen that varying the number of outliers decreases
the matching accuracy, as the ambiguities in extracting the
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TABLE I

COMPARISON OF AVERAGE MATCHING ACCURACIES ON DIFFERENT DATASETS USED

Fig. 11. Results for the matching pair of real images taken from [24] (top 3 rows) and Caltech-101 dataset (bottom2 rows). Blue indicates the mismatch
whereas yellow indicates the outliers.

TABLE II

COMPARISON OF COMPUTATION TIME (SECONDS) ON DIFFERENT DATASETS USED

CURTCM both achieve comparable performance in the pres-
ence of outliers. CURTCM remains top as outlier number
reaches to 20, which is around 45% of the inliers. A typical
case is depicted in Fig. 9. The top rows, the background
outliers are inconsistent in both images, which makes the
two graph structures ambiguous in matching. For better view,
the points from these image pairs are redrawn on 2D plane
instead on images itself. It is obvious from the view that
inliers are matched with corresponding inliers in second
image without mismatching with outliers. In our method such

as CURTCM, the partial graph observation limits the effect
of outliers. In comparison, conducting the relaxation labelling
procedure with the outliers achieves very low confidence score
to be matched with inliers, and t inliers may match with
outliers of the other image. Several other examples from this
dataset are presented in Figs. 10(b) and 10(c), which show
the actual points. The matched points in comparison with top
selected algorithms is displayed in columns 2 and 3. It is
evident from the figures that the proposed method consistently
achieves better accuracy in the presence of outliers. In Table 2,
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Fig. 12. Total time consumption for producing correspondence against
varying number of graph edges.

we report the time comparison on different datasets. It can
be seen that the proposed methods are efficient than the
best performing methods RRWHM and ADM, and is slightly
slower than but are much more accurate that the SM method.
CUR based methods still achieve encouraging figures both
in time and accuracy when compared to the baseline PRL
method. Fig. 10, shows the effect of increasing the number
of points on time cost in comparison with CUR factor-
ization methods, which indicates the significant decrease in
computation.

We further explored the image matching using the pro-
posed method on different available natural images reported
in recent studies [8]. The results are presented in Fig. 11,
which indicates the robustness of proposed method in the
presence of outliers. The interesting result can be seen in
row 3 of Fig. 11, where the logo of bank is being matched
in subsequent image. The outlier shares almost the same
proportion with inliers, but accurate matching can still be
obtained. Considering the conventional ways to build affinity
matrix may lead to inconsistent result here due to high ratio
of outliers. However, the sampling strategy to build tiny
search space for edge computation and then recovering the
complete graph structure here, minimizes the effect of these
outliers.

D. Application on Non-Rigid Object Matching

Matching a non-rigid object i.e. an object moving in video,
is much harder task as compared to pair of images discussed
before. The fact can be better understood through an example
given in Fig. 13. A tennis player moves within the video
frames that not only change the structure of moving object but
also alters the appearance of background accordingly. Under
this situation the salient points extracted from images are
no longer consistent as shown in top row of Fig 13. Graph
matching in this context is even more challenging to cope
with the scenario. To examine this issue, we have tested the
proposed method on a video sequence taken from [8]. Salient
points are first extracted from the video frames using the SURF
feature point extractor. Fig. 13 shows the extracted feature

Fig. 13. An illustration of the application of CUR matching on video
sequence with non-rigid motion of object.

points from different frames. It can be seen that the body
motion and background variation make it harder to match the
graph patterns, as the given points structure is inconsistent.
The second row of Fig. 13 shows the matching result with a
clear indication that the object matches with non-rigid object
(cyan colour) in second image whereas the noisy background
points are matched with each other (yellow colour).

The image correspondence problem can also be turned into
an object tracking scenario, when the points of interest (inliers)
are located in first image and then the corresponding match can
be found. We also investigate this application by specifying
the set of inliers in the first frame that corresponds only to the
player. After matching the points between two frames with
sufficient deformation and variations, we localize the object
with the bounding box that represents the match with inliers
only.

VI. CONCLUSION

In this paper, we have proposed CUR decomposition based
graph matching framework and addressed image correspon-
dence application. The technical crux of our study is the
intuitive graph representation in terms of matrix approxima-
tion that is explicitly expressed as actual graph nodes and
branches. The computation and accessibility to huge graph
compatibility coefficient matrix is thus avoided by means
of sampled small matrices in terms of CUR. Based on
this key ingredient we proposed two variants of proposed
approach and analysed their performance on image corre-
spondence datasets. The proposed methods is proved to be
robust against background outliers and the image deformations
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caused by viewpoints. We demonstrated that the combination
of approximating the matching with CUR decomposition
and conducting relaxation labelling on sampled compatibility
scorers has added robustness to final image correspondence.
Moreover, the reduced size small C, U and R compatibility
coefficients are much lighter to compute and store without any
need of accessing the overweight compatibility matrix, as in
case of traditional approaches where the inversion of such
a large matrix is itself a time-consuming task. Considering
the performance of proposed method in image correspondence
problem, we would like to further investigate more determin-
istic way to choose b ranches optimally, while establishing
prior CUR framework. Lastly, we aim to further extend this
mathematical abstraction to higher order matching problems.
We also conclude with the remarks that the heuristic variants
of proposed methods can be extended to solve many complex
image and video analysis problems with affordable space-time
complexities.
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