
2333-942X/17©2017IEEE Apri l 2017 IEEE SyStEmS, man, & CybErnEtICS magazInE 23

T
he analysis of a
multidimensional
data array is nec­
essary in many
applications. Al ­

though a data set can be very
large, it is possible that mean­
ingful and coherent patterns
embedded in the data array
are much smaller in size. For
example, in genomic data, we
may want to find a subset of
genes that coexpress under a
subset of conditions. In this
article, I will explain coclus­
tering algorithms for solving
the coherent pattern­detection
problem. In these methods, a
coherent pattern cor responds
to a low­rank matrix or tensor
and can be represented as an
intersection of hyperplanes in
a high­dimensional space. We
can then extract coherent pat­
terns from the large data array
by detecting hyperplanes.
Examples will be pro vided to
demonstrate the effectiveness
of the coclustering algorithms
for solving unsupervised pat­
tern classification problems.

Coclustering of 2-D
and 3-D Data
Coclustering is often called
biclustering for two­dimen­
sional (2­D) data and triclus-
tering for three­dimensional
(3­D) data [1]–[3]. Let us take
the data in Figure 1 as an
example. Our input is a large
matrix in Figure 1(a) that
appears to be just random
data. In fact, a subset of rows
and a subset of columns con­
tain a much smaller coherent
pattern. If we rearrange the
elements in the matrix so
that the rows and columns in
the pattern are placed in a
contiguous region, then we
will see the coherent pat­
tern in Fig ure 1(b). Our task
of co clustering here is to
find the locations or index­
es of these rows and columns
[Figure 1(c)].

This concept of coclus­
tering developed for 2­D

data can be extended to 3­D
and higher­dimensional data,

which are represented as
higher­order tensors. It is use­

ful to explain the terminology
we use here. In pattern recogni­

tion and machine learning, an
input sample represented by a fea­

ture vector is often considered as a

Coclustering of
Multidimensional

Big Data
A Useful Tool for Genomic, Financial,

and Other Data Analysis

by Hong Yan

Digital Object Identifier 10.1109/MSMC.2017.2664218
Date of publication: 18 April 2017

©
iS
to

c
k
p
h
o
to

/g
r
a
n
d
e
d
u
c

24 IEEE SyStEmS, man, & CybErnEtICS magazInE Apri l 2017

point in a multidimensional space.
That is, the variable for each ele­
ment in the vector represents an
axis in the multidimensional space.
The dimension of the vector is the
number of elements in the vector.
However, in image processing and
computer programming, we use
the terms like 2­D and 3­D images,
and 2­D and 3­D data arrays. Here,
dimension means the number of
directions or indices in an image or
data array. In tensor algebra, each
direction is called a mode, and the
term multiway data array is often
used. For simplicity, we will use
the word multidimensional for both vector spaces and
data arrays when the context is clear. That is, for real
numbers, a multidimensional space corresponds to the set
RM, where M is the number of elements or dimensionality
of the vectors in the space. An N­dimensional data array
(N­way data array, or Nth order, or N­mode tensor)
belongs to the set RM M MN1 2# # #g , where ,M1 ,M1 …, MN are
the numbers of elements in corresponding directions.

In the previous discussion, we used the term coherent
pattern, which means that elements in the rows or columns
of the pattern are correlated and display certain common
properties. We will explain later that a coherent pattern can
be represented as a low­rank matrix or tensor and that our
tasks of coclustering are to extract one or more coherent
patterns embedded in the matrix or tensor.

Differences Between
Clustering and Coclustering
Clustering is a commonly used meth­
od in unsupervised learning. Given
the input data as a matrix, the task of
clustering is to partition the matrix
into clusters along either the row or
the column direction, but not both
at the same time [Figure 2(a)–(b)].
The rows and columns correspond
to samples and features, respec­
tively, in pattern recognition ap ­
pl i cations. Similar to clustering,
co clustering deals with unlabeled
data and performs unsupervised pat­
tern classification. However, there is

a fundamental difference between clustering and coclustering.
In coclustering, the data are partitioned in both row and col­
umn directions. Therefore, for 2­D data, a cluster consists of a
subset of rows (or columns) with all columns (rows) present in
each row (column), while a cocluster consists of a subset of
rows and a subset of columns [Figures 2(c)].

There are several other differences between clustering and
coclustering [3], [16]. In hard clustering, the clusters do not
have any overlap [Figure 2(a)–(b)]. That is, a sample is
assigned to one and only one cluster unless it is considered as
an outlier and is excluded in classification. In soft clustering, a
sample is assigned to each cluster with a membership value in
fuzzy logic modeling. In coclustering, several coclusters can
partially overlap. For example, in Figure 2(c), cocluster 3 over­
laps with all the other three coclusters. In addition, an element
in the data matrix may belong to none, one, or more coclus­
ters. As shown in Figure 1(b), a large matrix may contain
much smaller coclusters, and most elements in the matrix are
irrelevant. We need to identify the row and column indices of
relevant elements to detect the coclusters.

In hard clustering [Figure 2(a)–(b)], we can always
exchange the rows or columns so that each cluster occupies a
contiguous region. However, in coclustering, we may not be
able to display all coclusters as contiguous regions at the same
time. This is illustrated in Figure 2(c). If we exchange rows so
that three regions of cocluster 3 become contiguous, then
cocluster 2 or cocluster 4 would be split into more than one
region. Therefore, it is more difficult to visualize all coclusters
than clusters.

The concept of coclustering was introduced in the 1970s,
but it has gained much attention only recently due to its use­
ful applications to genomic data analysis [1]–[26]. In a
genome, genes usually work together to perform a biological
function. In gene expression data, the samples represent
genes and features conditions. A condition can be a time
point, an organ, a species, or a different experiment setup. A
cocluster represents a subset of genes that coexpress (or are
coregulated) under a subset of conditions. Coclustering anal­
ysis is useful for understanding diseases caused by aberrant
coexpressed genes.

(a) (b) (c)

Figure 1. an example of a cocluster. (a) a large
matrix that appears to contain just random data.
(b) a cocluster exists in the matrix. the elements of
the cocluster can be put together to show a coherent
pattern by rearranging rows and columns in (a).
(c) the locations of the elements in the cocluster in
the original matrix in (a), with all elements outside
the cocluster shown as a uniform gray background.

Although a data set
can be very large,
it is possible that
meaningful and
coherent patterns
embedded in the
data array are much
smaller in size.

 Apri l 2017 IEEE SyStEmS, man, & CybErnEtICS magazInE 25

Types of Coclusters
Let us consider 2­D data first. Assume that our input is a
matrix A Raij

M M1 2!= #^ h and that a 2­D cocluster AIJ contains
elements of A in NI rows I , , ,i i iN1 2 Ig= " , and NJ columns
J , , ,j j jN1 2 Jg= " ,. We will define several types of 2­D coclus­
ters [3], [16], [25]. These coclusters have been studied exten­
sively in gene expression analysis, and their biological
meanings will be explained.
1) Constant cocluster: A I J| , ,a i jIJ ij ! !n= =" , where n is

a constant. In a constant cocluster, all elements take the
same value. In gene expression data analysis, a constant
cocluster means all genes in I have the same expression level
under all experiment conditions in J.

2) Constant-row cocluster: A a 1 I| ,iIJ j Ji
T

i !n= =" , where
1J is a vector of NJ ones. Similarly, we can define a
 constant­column cocluster as A a 1 J ,jIJ i Ij j !;n= =" ,
where 1I is a vector of NI ones. In a constant­row
 cocluster, elements in each row have the same value,
while in a constant­column cocluster, elements in
each column have the same value. In gene expression
analysis, a constant­row cocluster means each gene
in I has the same expression level under all condi­
tions in J, but different genes have different expres­
sion levels. A constant­ column cocluster means all
genes in I have the same expression level for each

condition in J, but the expression level is different for
a different condition.

3) Additive cocluster: A a 1 a I, .i qIJ j J ji
T

i q
T ; !n= = +" , In an

additive cocluster, a column can be obtained by adding a
constant to another column. In gene expression analysis,
an additive cocluster means that the expression level of
each gene in I under a condition in J is always increased
or decreased by a constant under another condition.
Here, we have defined the additivity in terms of columns.
It is also possible to define the additivity in terms of rows,
but such a pattern has not been used in gene expression
analysis, to our knowledge.

4) Multiplicative cocluster: AIJ = a a I,i qj ji
T

i q
T ; !n=" , . In

a multiplicative cocluster, a column can be ob tained
by multiplying another column by a constant. In gene
expression analysis, a multiplicative cocluster means
that the expression level of each gene in I under a
 condition in J is always scaled up or down by a con­
stant under another condition. Again, here we have
defined the scaling in terms of columns. It is also pos­
sible to define the scaling in terms of rows, but such a
pattern has not been used in gene expression analysis,
to our knowledge.
Several numerical examples of these coclusters are

shown in Figure 3.

8.2 8.2 8.2 8.2

8.2 8.2 8.2 8.2

8.2 8.2 8.2 8.2

8.2 8.2 8.2 8.2

1.5 1.5 1.5 1.5

5.2 5.2 5.2 5.2

2.8 2.8 2.8 2.8

9.3 9.3 9.3 9.3

1.5 5.2 2.8 9.3

1.5 5.2 2.8 9.3

1.5 5.2 2.8 9.3

1.5 5.2 2.8 9.3

6.8 5.7 7.7 4.8

5.6 4.5 6.5 3.6

3.3 2.2 4.2 1.3

8.5 7.4 9.4 6.5

2.2 3.3 1.1 4.4

3.4 5.1 1.7 6.8

4.6 6.9 2.3 9.6

5.6 8.4 2.8 11.2

(a) (b) (c) (d) (e)

Figure 3. Examples of coclusters: (a) a constant cocluster, (b) a constant-row cocluster, (c) a constant-column
cocluster, (d) an additive cocluster, and (e) a multiplicative cocluster.

Cluster 1

Cluster 2

Cluster 3

Cluster 4

C
lu

st
er

 1

C
lu

st
er

 2

C
lu

st
er

 3

C
lu

st
er

 4

S
am

pl
e

S
am

pl
e

S
am

pl
e

Feature Feature Feature
(a) (b) (c)

Cocluster 1

Cocluster 4

C
oc

lu
st

er
 2

C
oc

lu
st

er
 3

Figure 2. an illustration of the differences between clustering and coclustering. (a) Clustering involving data
classification along the sample direction only. (b) Clustering with data classification along the feature direction
only. (c) Coclustering involving data classification along both sample and feature directions.

26 IEEE SyStEmS, man, & CybErnEtICS magazInE Apri l 2017

The linear relations (coherence
among rows or columns) in 2­D
coclusters can be extended to
higher­dimensional data. We pro­
vide definitions for 3­D data only
[25], and these definitions can be
further extended to higher dimen­
sions in a similar way. Assume
that our input is a third­order ten­
sor, R ,A aijk

M M M1 2 3!= # #^ h and that
a 3­D cocluster, AIJK, contains elements in locations
I J K , , , , , , , , , .i i i j j j k k kN N N1 2 1 2 1 2I J K# # # #g g g= " " ", , ,
We define the following 3­D coclusters:
1) Constant cocluster: A I J K| , ,a i j kIJK ijk ! ! !n= =" ,

2) Constant-column-fiber cocluster:
A 1 J K| ,a j kIJK I Ijk jk ! !n= =" ,

3) Additive-fiber cocluster:
A 1 a J K, ,a j kIJK I I I()jk jk 1 ; ! !n= = +" , where aI()1 is the
first fiber of the co­cluster

4) Multiplicative-fiber cocluster:
A a J K,a j kIJK I I()jk jk 1 ! !;n= =" , .
In practical applications, a cocluster pattern often contains

noise, and the linear relations defined above only hold approxi­
mately. Also, there can be more than one cocluster in the data,
and we need to determine the index sets I and J for 2­D data or
I, J, and K for 3­D data for each cocluster.

Coclustering Algorithms
Cheng and Church [1] were the first who introduced cocluster­
ing to gene expression data analysis. In their method, the fol­
lowing cost function is minimized to find a 2­D cocluster
defined on I J# :

 I J I J(,) ,C a a a a1
J I

JI
ij i j ij

ji

2
= - - +

!!

r r r^ h|| (1)

where J/ ,a a1J Ji ijj
=

!
r ^ h| I/ ,a a1I Iij ij=

!
r ^ h| and aIJ =r

I J/ a1
JI ijji !!

^ h || represent row average, column aver­
age, and pattern average, respectively, of the cocluster. The
method can be used to detect constant coclusters. It is inter­
esting to note that in (1), if we remove the row and column
averages and change the sign of the pattern average, then the
cost function looks similar to that used for the k­means clus­
tering algorithm.

A number of other coclustering methods have also been
developed recently [2]–[26]. Most of these methods can be
applied to 2­D data and deal with a specific type of coclusters
only. Several review papers provide detailed summaries and
comparisons of these methods [3], [16], [20].

Our research group has proposed geometric models for
coclusters [6], [7], [9], [15], [19], [25]. According to the defi­
nitions of 2­D coclusters discussed previously, columns of
a cocluster can be related by linear equations. Geometri­
cally, these equations correspond to lines, planes, or
hyperplanes in 2­D, 3­D, or higher­dimensional spaces,
respectively. If we consider all columns at the same time,

then we need to find all these
hyperplanes and determine their
intersections. The hyperplanes can
be detected based on the Hough
transform (HT), which is widely
used in image processing and pat­
tern recognition [27], [28].

If the input data contain a large
number of columns, then the HT­
based method that is applied to all

columns at the same time becomes ineffective because the
accumulator array for the quantized hyperplane parameters
is too large. The problem can be overcome if we only consid­
er two columns at a time. Subcoclusters detected from col­
umn­pair spaces can then be merged to form larger ones.
For 3­D and higher­dimensional data, there will be a
large number of column pairs. This problem can be solved
if we transform the input data first using singular­value
 decomposition (SVD) [25], which will be discussed in the
next section.

Cocluster Detection in Singular-Vector Spaces
In this section, we describe a coclustering method based on
hyperplane detection in singular­vector spaces (HDSVS),
which we have recently developed [25]. This method can be
used to attend to all of the types of coclusters previously dis­
cussed and low­rank matrices or tensors in general that are
embedded in high­dimensional data arrays.

Let us consider 2­D coclusters first. According to their
definition given previously, an additive cocluster as a matrix
has rank two, and constant, constant­row, constant­column,
and multiplicative coclusters have rank one. Applying SVD
to AIJ, we obtain

A U V u u
v
v

u u

u u u

u u u

v
v

v
v

v
v

v v v

v v v

0
0

0
0

IJ
T

T

T

M

M

M M

1 2

1

2

1

2

1 2

1

2

11

21

12

22

1

2

1 11 1 2 21 2 1 12 1

2 22 2 1 1 1 2 2 2

2

2

2 2

g

g

g

v

v

v

v

v v v

v v v

R= =

=

= +

+ + ,

^

^

h

h

6

6

6

;

;

;

<

@

@

@

E

E F

E

 (2)

where U, R , and V are matrices containing left singular vec­
tors, singular values, and right singular vectors, respectively.
Here, we only keep two leading singular values because the
rank of AIJ is at most two.

Equation (2) shows that each column aIJ of AIJ can be
expressed as a linear combination of singular vectors u1

and u2 :

 u u a .v v Ij j j1 1 1 2 2 2v v+ = (3)

This set of linear equations represents a line in the u1 and
u2 space, while elements of u1 and u2 are points on the line.
Similarly, we can show that each row of AIJ can be expressed
as a linear combination of singular vectors, v1 and v2, and ele­
ments of v1 and v2 form a line.

In coclustering,
the data is partitioned
in both row and
column directions.

 Apri l 2017 IEEE SyStEmS, man, & CybErnEtICS magazInE 27

Note that (3) holds as long as AIJ
has rank two or less. For example, if a
column of AIJ is obtained by scaling
another column and adding a con­
stant, as a combination of additive and
multiplicative cocluster patterns, AIJ
has rank two, and (3) is also valid. In
general, HDSVS can be used to extract
low­rank patterns embedded in a large
matrix or tensor.

If the data have noise, we need to
filter out small singular values. If there
is more than one cocluster in the data,
then the rank of the matrix can be
larger than two, and we need to retain
more singular vectors. In this case,
each cocluster will correspond to a
hyperplane in general in the singular­
vector spaces. When coclusters are embedded in a large
matrix, rows and columns in the coclusters will be found from
the detected hyperplanes, while irrelevant elements will be dis­
tributed randomly off the hyperplanes. Different scenarios
have been discussed in [25].

Let us assume that we have found row indices sets I1 and
I2 from the hyperplanes detected from left singular vectors
and column indices sets J1 and J2 from the hyperplanes
detected from right singular vectors. There are four combina­
tions of these index sets: I ,J1 1# I J ,1 2# I J ,12 # and I J .2 2# It
is possible that some of these pairs do not correspond to
coclusters. We can use the following scoring function to select
coclusters [25]:

I J

J a a

I a a

(,) ,

, ,

, ,

min

min

S S S

1 1
1

1 1
1

I J
I J

I J
I I

J

J J
I

,

,
,

,

i j
j i

i j
j q

q j q

i q
q i q

t

t

=

= - -

- -

!

!

! !

! !
!

!

^

^

^

h

h

h

;

E

|

|

 (4)

where t represents Pearson’s correlation coefficient between
two vectors. We consider that a cocluster is identified if S(I, J)
is less or equal to a prespecified value.

The HDSVS method can be extended to higher­order ten­
sors [25]. The higher­order SVD (HOSVD) [29]–[32] of an
N­mode tensor RA M M MN1 2! # # #g is defined as

 U U U ,A B () () ()
N

N
1

1
2

2
3# # # #g= (5)

where B is the core tensor, U()n (n = 1, 2, …, N) contains
singular vectors, and n# stands for tensor and matrix mul­
tiplication along mode n. Then, U()n can be computed from
the mode­n unfolded matrix A()n of the tensor. In general,
A()n has the size of M M M M Mn n n N1 1 1# g g- + and is
obtained by keeping mode n as one dimension and flatten­
ing all other modes to another dimension. The SVD of A()n
has the following form:

 A U V ,() () () ()n n n n TR= ^ h (6)

where U()n and V()n are matrices for
the left and right singular vectors,
respectively, and ()nR is a diagonal
matrix containing singular values.
For n = 1, 2, …, N, we only need to
compute U()n and not V()n to obtain
(5). The decomposition of a three­
mode tensor is illustrated in Figure 4.

By detecting hyperplanes in the
singular­vector space with U()n , we
can then find indices sets along
mode n for cocluster identification.
An example is shown in Figure 5.
The index sets along three modes
are I, J, and K for 3­D data, and they
should be understood as ,I()1 I ,()2 and
I()3 in a general notation. Assume
that an index set along mode n

is I ;()n then, the scoring function in (4) can be extended to
higher dimensional coclusters:

I I I(, , ,)

, , , .min

S

S S S
I I I

I I I I I I I

() () ()

, , ,

N

i i i
i i i

1 2

() () ()
() () () () () () ()

N
N

N N
N

1
1

2
2

1
2 1

2
3 1 2

g

g=
g

g g g
! ! !

^ h (7)

Examples
As an example, we show an eight­by­five matrix in Figure 6(a).
The highlighted elements in the matrix form a general linear
cocluster, which is a combination of additive and multiplicative

M3

M1
M1

M2
U2

U3
U1 M3

m1

m1

m3

m2

m2

m3

M2

A

B

Figure 4. the decomposition of a three-mode tensor
using HOSVD. U1 can be found by unfolding A to an
M M M1 2 3# matrix and computing the left singular
vectors of this matrix. U2 and U3 can be computed in
similar ways.

Tensor A

Size
M1×M2×M3

AIJK U1 U2 U3

|I|
Rows

|J|
Rows

|K|
Rows

Figure 5. the detection of coclusters in singular
vector spaces. In this diagram, AIJK is a cocluster
embedded in a large tensor A. the index sets
I, J, and K can be determined by searching for
hyperplanes based on U1, U2, and U3, respectively.

The concept of
coclustering was
introduced in the
1970s, but it has
only gained much
attention recently
due to its useful
applications to
genomic data
analysis.

28 IEEE SyStEmS, man, & CybErnEtICS magazInE Apri l 2017

patterns. Column 4 is obtained by
scaling column 1 by 0.9 and adding a
constant 10, and column 5 is obtained
by scaling column 1 by 1.2 and adding
a constant 23. These additive and
multiplicative relations are approxi­
mate because the cocluster is cor­
rupted by noise. Moving columns 1, 4,
and 5 together [Figure 6(b)], we can
see a ramp pattern with increasing
value from the upper left to the lower
right. Values of elements in the coclu­
ster are distributed in the range
19–89, while those in the background (irrelevant elements) are
in the range 19–99 plus an outlier with value 5. So there is no
easy way to determine which elements belong to the cocluster
from just the values.

The linear relations among the columns in the cocluster
in Figure 6(a) correspond to hyperplanes in a five­dimen­
sional space. In practical applications, the number of

columns would be much larger, and
it would be difficult to detect the
hyperplanes and find intersections
of them with all column variables at
the same time. Alternatively, we can
consider each column pair at a
time. Column pair 1–2 contains only
scattered points as shown in blue in
 Figure 6(c). One may argue that
points in rows 2, 3, and 7, i.e., (76,
78), (26, 43), and (92, 90), are
approximately collinear. We can
specify the minimum number of

rows required for a cocluster, four in this case, to filter out
noisy components. Further filtering can be done by specify­
ing the minimum number of columns required. For column
pair 1–4, we detect a long line with five points in rows, {1, 3,
4, 6, 8}, which corresponds to row locations of the cocluster.
The line detection can be done using the HT in general. We
will obtain the same results for column pairs 1–5 and 4–5.

19 94 35 26

76 78 23 42

26 43 51 36

33 19 25 40

5 78 64 82

40 89 47 47

92 90 21 24

46

1

2

3

4

5

6

7

8

1

3

4

6

8

2

5

799 66 51

41

1 2 3 4 5

76

47

60

65

72

72

89

19 26 41 94

26 36 47 43

33 40 60 19

40 47 72 89

46 51 89 99

76 42 76 78

5 82 65 78

35

1 4 5 2 3

51

25

47

66

23

64

92 24 72 90 21

100

80

60

40

20

0
0 20 40 60 80 100

4

5

1 6
8

2
7

5

3

1
3

4
6 8

2

7

0.6
0.4
0.2

–0.2
–0.4
–0.6

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 –0.2
–0.25

–0.35
–0.4

–0.45
–0.5

–0.3

0

0.6
0.4
0.2

–0.2
–0.4
–0.6

05 1 6

8

3

4

2
7

3

4
5

1

2

0.6
0.4

0.2

0
–0.2

–0.4
–0.3

–0.2
–0.1

0
0.1

0.2
0.3 0.4

(c)(b)

(d) (e)

(a)

Figure 6. an illustration of 2-D cocluster detection. (a) a noisy cocluster with the combination of additive
and multiplicative patterns embedded in a matrix with large variations in the background. (b) the column
pairs 1–2 (blue) and 1–4 (red). (c) a long line close to five points is detected in the space of column pair 1–4.
(d) the points shown in the u u u- -1 2 3 space. a hyperplane close to six points is detected. (e) the points shown in
the v v v- -1 2 3 space. a hyperplane close to three points is detected.

In HDSVS, the removal
of small singular
values can reduce the
number of variables
for hyperplane
detection.

 Apri l 2017 IEEE SyStEmS, man, & CybErnEtICS magazInE 29

Therefore, we find that a cocluster
exists in {1, 3, 4, 6, 8} # {1, 4, 5}.

In this example, the column­pair­
based method works well. For a
matrix with M2 columns, there are
M2(M2 – 1) column pairs, and to
combine the results from all these
column pairs can be complicated.
One may think many column pairs
are redundant. In the example here,
we can obtain the column indices {1,
4, 5} from column pairs 1–4 and 1–5
without considering 4–5. However,
in more complex cases, due to noisy and multiple and over­
lapping coclusters, the column pairs may not produce the
same results; therefore, it is difficult to determine which pairs
are redundant.

We can consider all columns at the same time using
HDSVS. First, we compute the SVD of the input matrix. The
singular values of the example in Figure 6(a) are 358.56, 89.39,
54.81, 23.69, and 12.84. It is reasonable to retain the first three
large singular values and remove the two smallest ones to fil­
ter out noise. Although the cocluster has a rank of two, we
usually obtain better results by retaining slightly more singu­
lar values. In Figure 6(d), we consider singular vectors u ,1 u ,2
and u3 corresponding to the three retained singular values. In
the u u u- -1 2 3 space, we detect a hyperplane close to

, ,u u u11 12 13^ h, , ,u u u1 2 33 3 3^ h, , ,u u u1 2 34 4 4^ h, , ,u u u1 2 36 6 6^ h, and
, ,u u u1 2 38 8 8^ h. Similarly, in the v v v- -1 2 3 space, we detect a hyper­

plane close to , , ,v v v11 12 13^ h , , ,v v v41 42 43^ h and , ,v v v51 52 53^ h [Fig­
ure 6(e)]. Therefore, a cocluster exists in {1, 3, 4, 6, 8} # {1, 4, 5}.

In HDSVS, the removal of small singular values can reduce
the number of variables for hyperplane detection. If the
matrix is large and the coclusters are small in size, the reduc­
tion will be significant. Hyperplane detection is a key step in
HDSVS. This can be done using the HT or the linear grouping
algorithm [25].

Although the matrix in this example only has the size of
eight by five for the purpose of illustration, the computation­
al procedure for a larger data size is the same. In our work on
gene expression data analysis, many experiments were car­
ried out with large data sets, and more examples can be
found in [6], [7], [9], [14], [15], [19], and [25]. To improve com­
putational speed, graphics processing units and specially
designed hardware, such as field programmable gate arrays,
can be employed [22], [23].

Discussions and Conclusions
Coclustering is useful for genomic data analysis. In add ­
ition, it has many other applications [3], [16], some of
which are

 ◆ analysis of consumer spending patterns to discover a sub­
set of consumers who like to purchase products from a
subset of companies

 ◆ analysis of financial data to find a subset of sectors that have
similar economic growth patterns in a subset of regions

 ◆ analysis of chemical compo­
nents in food to determine a
subset of components (nutri­
ents or toxicants) in a subset of
food types

 ◆ analysis of web documents to
search for a subset of documents
that contain a subset of keywords
in a subset of locations

 ◆ analysis of training data in
ma chine learning to extract a
subset of features that are rele­
vant to a subset of features.

In [8], we analyzed foreign exchange data over 120
months and found currencies with correlations in some
but not all time periods. Some of the coclusters reveal
that several currencies had similar rapid movement pat­
terns in the early stage of the Asian financial crisis in late
1990s. In [26], we used coclustering to select Gabor wave­
let features of images for facial expression classification.
There are thousands and even tens of thousands of fea­
tures to compute for a full set of Gabor wavelets with dif­
ferent scales and orientations in different locations of a
face image. With the type of facial expression in one
direction and the Gabor wavelet feature in another direc­
tion, we performed cocluster analysis of the feature data.
From the coclusters, we can retain relevant features for a
facial expression and discard all other features. With
only 20% of the features selected this way, we have
obtained an even higher classification rate than that from
the entire set of features. The reason for the improved
performance is that, through coclustering, we can
remove irrelevant and noisy features and enhance the
feature quality. It is interesting that a reasonable accura­
cy can still be achieved even when we retain only 0.9% of
the original features.

This example of facial expression feature selection
is especially encouraging. In traditional machine­learn­
ing and pattern­recognition methods, all features are
used to build a classifier. In practical applications, if
our input data contain a large number of features, a sub­
set of features may be useful for only a subset of class­
es, and another subset of features may be useful for
just another subset of classes. In these cases, feature
selection is a combinatorial problem. Coclustering pro­
vides a systematic and robust method to deal with big
data sets and select relevant and important features.
This procedure can be used to filter out noise, improve
classification performance, and reduce the computing
time significantly.

In summary, coclustering provides classifications
simultaneously in all directions of a multidimensional
data array. It may be used to detect coherent patterns
that are embedded in a large matrix or tensor and con­
tain a subset of elements in each direction. It can be
performed effectively in singular­vector spaces based

Coclustering provides
classifications
simultaneously in
all directions of a
multidimensional
data array.

30 IEEE SyStEmS, man, & CybErnEtICS magazInE Apri l 2017

on hyperplane detection. We expect that coclustering
will gain more and more applications in machine
lear n ing, image processing, bioinformatics, and big
data analytics.

Acknowledgments
This work is supported by the Hong Kong Research Grants
Council (project CityU 11214814) and City University of Hong
Kong (project 9610308).

About the Author
Hong Yan (h.yan@cityu.edu.hk) earned his Ph.D. degree
from Yale University, New Haven, Connecticut. He was a
professor of imaging science at the University of Sydney,
Australia, and he is currently a professor of computer engi­
neering at City University of Hong Kong. His research
 interests include image processing, pattern recognition,
and bioinformatics. He was elected an International Associ­
ation for Pattern Recognition fellow for contributions to
document image analysis and an IEEE Fellow for contribu­
tions to image recognition techniques and applications. He
received the 2016 Norbert Wiener Award from the IEEE
Systems, Man, and Cybernetics Society for contributions to
image and biomolecular pattern recognition techniques.

References
[1] Y. Cheng and G. M. Church, “Biclustering of expression data,” in Proc. 8th Int. Conf.

Intelligent Syst. Molecular Biology, 2000, pp. 93–103.

[2] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, “Spectral biclustering of microarray data:

Coclustering genes and conditions,” Genome Res., vol. 13, no. 4, pp. 703–716, 2003.

[3] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for biological data analysis: A sur-

vey,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 1, no. 1, pp. 24–45, 2004.

[4] B. Long, Z. Zhang, and P. S. Yu, “Coclustering by block value decomposition,” in Proc.

Assoc. Computing Machinery Special Interest Group Conf. Knowledge Discov-

ery and Data Mining (ACM SIGKDD) , 2005, pp. 635–640.

[5] P. Carmona-Saez, R. D. Pascual-Marqui, F. Tirado, J. M. Carazo, and A. Pascual-Montano,

“Biclustering of gene expression data by non-smooth non-negative matrix factorization,”

BMC Bioinformatics, vol. 7, no. 78, pp. 1–18, 2006.

[6] X. Gan, A. W. C. Liew, and H. Yan, “Discovering biclusters in gene expression data

based on high-dimensional linear geometries,” BMC Bioinformatics, vol. 9, no. 209,

pp. 1–15, 2008.

[7] H. Zhao, A. W. C. Liew, X. Xie, and H. Yan, “A new geometric biclustering algorithm based

on the Hough transform for analysis of large-scale microarray data,” J. Theoretical Biol.,

vol. 251, no. 3, pp. 264–274, 2008.

[8] H. Li and H. Yan, “Bicluster analysis of currency exchange rates,” in Soft

 Computing Applications in Business, B. Prasad, Ed. New York: Springer-Verlag,

2008, pp. 19–34.

[9] H. Zhao, K. L. Chan, L. M. Cheng, and H. Yan, “A probabilistic relaxation labeling frame-

work for reducing the noise effect in geometric biclustering of gene expression data,” Pattern

Recognit., vol. 42, no. 11, pp. 2578–2588, 2009.

[10] J. van Rosmalen, P. J. F. Groenen, J. Trejos, and W. Castillo, “Optimization strategies for

two-mode partitioning,” J. Classification, vol. 26, no. 2, pp. 155–181, 2009.

[11] A. Li and D. Tuck, “An effective tri-clustering algorithm combining expression data

with gene regulation information,” Gene Regulation Syst. Biol., vol. 2009, no. 3,

pp. 49–64, 2009.

[12] H. Wang, F. Nie, H. Huang, and C. Ding, “Nonnegative matrix tri-factorization based high-

order co-clustering and its fast implementation,” in Proc. IEEE 11th Int. Conf. Data

Mining, 2011, pp. 774–783.

[13] Z. Li and X. Wu, “Weighted nonnegative matrix tri-factorization for co-clustering,” in

Proc. IEEE Int. Conf. Tools Artificial Intelligence, 2011, pp. 811–816.

[14] W. H. Yang, D. Q. Dai, and H. Yan, “Finding correlated biclusters from gene expression

data,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 4, pp. 568–584, 2011.

[15] Z. Wang, C. W. Yu, R. C. C. Cheung, and H. Yan, “Hypergraph based geometric biclustering

algorithm,” Pattern Recognit. Lett., vol. 33, no. 12, pp. 1656–1665, 2012.

[16] H. Zhao, A. W. C. Liew, D. Z. Wang, and H. Yan, “Biclustering analysis for pattern discov-

ery: Current techniques, comparative studies, and applications,” Current Bioinformatics,

vol. 7, no. 1, pp. 43–55, 2012.

[17] W. Ayadi, M. Elloumi, and J. K. Hao, “Pattern-driven neighborhood search for biclustering

of microarray data,” BMC Bioinformatics, vol. 13, no. 7, pp. S11, 2012.

[18] F. Shang, L. C. Jiao, and F. Wang, “Graph dual regularization non-negative matrix

factorization for co-clustering,” Pattern Recognit., vol. 45, no. 6, pp. 2237–2250,

2012.

[19] D. Z. Wang and H. Yan, “A graph spectrum based geometric biclustering algorithm,” J.

Theoretical Biol., vol. 317, pp. 200–211, Jan. 2013.

[20] K. Eren, M. Deveci, O. Küçüktunç, and Ü. V. Çatalyürek, “A comparative analysis of

biclustering algorithms for gene expression data,” Briefings Bioinformatics, vol. 14, no.

3, pp. 279–292, 2013.

[21] E. E. Papalexakis, N. D. Sidiropoulos, and R. Bro, “From k-means to higher-way co-

clustering multilinear decomposition with sparse latent factors,” IEEE Trans. Signal

Process., vol. 61, no. 2, pp. 493–506, 2013.

[22] B. Liu, Y. Xin, R. C. C. Cheung, and H. Yan, “GPU-based biclustering for microarray data

analysis in neurocomputing,” Neurocomputing, vol. 134, pp. 239–246, June 2014.

[23] B. Liu, C. Wai, D. Wang, R. Cheung, and H. Yan, “Design exploration of geometric biclus-

tering for microarray data analysis in data mining,” IEEE Trans. Parallel Distrib. Syst.,

vol. 25, no. 10, pp. 2540–2550, 2014.

[24] A. Oghabian, S. Kilpinen, S. Hautaniemi, and E. Czeizler, “Biclustering methods: Bio-

logical relevance and application in gene expression analysis,” PLoS ONE, vol. 9, no. 3,

p. e90801, 2014.

[25] H. Zhao, D. D. Wang, L. Chen, X. Liu, and H. Yan, “Identifying multidimensional co-

clusters in tensors based on hyperplane detection in singular vector spaces,” PLoS ONE, vol.

11, no. 9, p. e0162293, 2016.

[26] S. Khan, L. Chen, X. Zhe, and H. Yan, “Feature selection based on co-clustering for effec-

tive facial expression recognition,” in Proc. 16th IEEE Int. Conf. Machine Learning

and Cybernetics, 2016, pp. 48–53.

[27] H. Li, M. A. Lavin, and R. J. Le Master, “Fast Hough transform: a hierarchical approach,”

Comput. Vis. Graph. Image Process., vol. 36, no. 2–3, pp. 139–161, 1986.

[28] A. Goldenshluger and A. Zeevi, “The Hough transform estimator,” Ann. Statist., vol. 32,

no. 5, pp. 1908–1932, 2004.

[29] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decompo-

sition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1253–1278, 2000.

[30] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Rev.,

vol. 51, no. 3, pp. 455–500, 2009.

[31] G. Bergqvist and E. G. Larsson, “The higher-order singular value decomposition: Theory

and an application,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 151–154, 2010.

[32] S. P. Ponnapalli, M. A. Saunders, C. F. Van Loan, and O. Alter, “A higher-order generalized

singular value decomposition for comparison of global mRNA expression from multiple organ-

isms,” PloS ONE, vol. 6, no. 12, pp. e28072, 2012.

