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T
he analysis of a 
multidimensional 
data array is nec­
essary in many 
applications. Al ­

though a data set can be very 
large, it is possible that mean­
ingful and coherent patterns 
embedded in the data array 
are much smaller in size. For 
example, in genomic data, we 
may want to find a subset of 
genes that coexpress under a 
subset of conditions. In this 
article, I will explain coclus­
tering algorithms for solving 
the coherent pattern­detection 
problem. In these methods, a 
coherent pattern cor responds 
to a low­rank matrix or tensor 
and can be represented as an 
intersection of hyperplanes in 
a high­dimensional space. We 
can then extract coherent pat­
terns from the large data array 
by detecting hyperplanes. 
Examples will be  pro  vided to 
demonstrate the effectiveness 
of the coclustering algorithms 
for solving unsupervised pat­
tern classification problems.

Coclustering of 2-D 
and 3-D Data
Coclustering is often called 
biclustering for two­dimen­
sional (2­D) data and triclus-
tering for three­dimensional 
(3­D) data [1]–[3]. Let us take 
the data in Figure 1 as an 
example. Our input is a large 
matrix in Figure 1(a) that 
appears to be just random 
data. In fact, a subset of rows 
and a subset of columns con­
tain a much smaller coherent 
pattern. If we rearrange the 
elements in the matrix so 
that the rows and columns in 
the pattern are placed in a 
contiguous region, then we 
will see the coherent pat­
tern in Fig  ure 1(b). Our task 
of co  clustering here is to 
find the locations or index­
es of these rows and columns 
[ Figure 1(c)].

This concept of coclus­
tering developed for 2­D 

data can be extended to 3­D 
and higher­dimensional data, 

which are represented as 
higher­order tensors. It is use­

ful to explain the terminology 
we use here. In pattern recogni­

tion and machine learning, an 
input sample represented by a fea­

ture vector is often considered as a 
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point in a multidimensional space. 
That is, the variable for each ele­
ment in the vector represents an 
axis in the multidimensional space. 
The dimension of the vector is the 
number of elements in the vector. 
However, in image processing and 
computer programming, we use 
the terms like 2­D and 3­D images, 
and 2­D and 3­D data arrays. Here, 
dimension means the number of 
directions or indices in an image or 
data array. In tensor algebra, each 
direction is called a mode, and the 
term multiway data array is often 
used. For simplicity, we will use 
the word multidimensional for both vector spaces and 
data arrays when the context is clear. That is, for real 
numbers, a multidimensional space corresponds to the set 
RM, where M is the number of elements or dimensionality 
of the vectors in the space. An N­dimensional data array 
(N­way data array, or Nth order, or N­mode tensor) 
belongs to the set RM M MN1 2# # #g , where ,M1  ,M1  …, MN  are 
the numbers of elements in corresponding directions.

In the previous discussion, we used the term coherent 
pattern, which means that elements in the rows or columns 
of the pattern are correlated and display certain common 
properties. We will explain later that a coherent pattern can 
be represented as a low­rank matrix or tensor and that our 
tasks of coclustering are to extract one or more coherent 
patterns embedded in the matrix or tensor.

Differences Between 
Clustering and Coclustering
Clustering is a commonly used meth­
od in unsupervised learning. Given 
the input data as a matrix, the task of 
clustering is to partition the matrix 
into clusters along either the row or 
the column direction, but not both 
at the same time [Figure 2(a)–(b)]. 
The rows and columns correspond 
to samples and features, respec­
tively, in pattern recognition ap ­
pl i  cations. Similar to clustering, 
co   clustering deals with unlabeled 
data and performs unsupervised pat­
tern classification. However, there is 

a fundamental difference between clustering and coclustering. 
In coclustering, the data are partitioned in both row and col­
umn directions. Therefore, for 2­D data, a cluster consists of a 
subset of rows (or columns) with all columns (rows) present in 
each row (column), while a cocluster consists of a subset of 
rows and a subset of columns [Figures 2(c)].

There are several other differences between clustering and 
coclustering [3], [16]. In hard clustering, the clusters do not 
have any overlap [Figure 2(a)–(b)]. That is, a sample is 
assigned to one and only one cluster unless it is considered as 
an outlier and is excluded in classification. In soft clustering, a 
sample is assigned to each cluster with a membership value in 
fuzzy logic modeling. In coclustering, several coclusters can 
partially overlap. For example, in Figure 2(c), cocluster 3 over­
laps with all the other three coclusters. In addition, an element 
in the data matrix may belong to none, one, or more coclus­
ters. As shown in Figure 1(b), a large matrix may contain 
much smaller coclusters, and most elements in the matrix are 
irrelevant. We need to identify the row and column indices of 
relevant elements to detect the coclusters.

In hard clustering [Figure 2(a)–(b)], we can always 
exchange the rows or columns so that each cluster occupies a 
contiguous region. However, in coclustering, we may not be 
able to display all coclusters as contiguous regions at the same 
time. This is illustrated in Figure 2(c). If we exchange rows so 
that three regions of cocluster 3 become contiguous, then 
cocluster 2 or cocluster 4 would be split into more than one 
region. Therefore, it is more difficult to visualize all coclusters 
than clusters.

The concept of coclustering was introduced in the 1970s, 
but it has gained much attention only recently due to its use­
ful applications to genomic data analysis [1]–[26]. In a 
genome, genes usually work together to perform a biological 
function. In gene expression data, the samples represent 
genes and features conditions. A condition can be a time 
point, an organ, a species, or a different experiment setup. A 
cocluster represents a subset of genes that coexpress (or are 
coregulated) under a subset of conditions. Coclustering anal­
ysis is useful for understanding diseases caused by aberrant 
coexpressed genes.

(a) (b) (c)

Figure 1. an example of a cocluster. (a) a large 
matrix that appears to contain just random data.  
(b) a cocluster exists in the matrix. the elements of 
the cocluster can be put together to show a coherent 
pattern by rearranging rows and columns in (a).  
(c) the locations of the elements in the cocluster in 
the original matrix in (a), with all elements outside 
the cocluster shown as a uniform gray background.

Although a data set 
can be very large, 
it is possible that 
meaningful and 
coherent patterns 
embedded in the 
data array are much 
smaller in size.
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Types of Coclusters
Let us consider 2­D data first. Assume that our input is a 
matrix A Raij

M M1 2!= #^ h  and that a 2­D cocluster AIJ contains 
elements of A in NI rows I , , ,i i iN1 2 Ig= " , and NJ columns 
J , , ,j j jN1 2 Jg= " ,. We will define several types of 2­D coclus­
ters [3], [16], [25]. These coclusters have been studied exten­
sively in gene expression analysis, and their biological 
meanings will be explained.
1) Constant cocluster: A I J| , ,a i jIJ ij ! !n= =" ,  where n is 

a constant. In a constant cocluster, all elements take the 
same value. In gene expression data analysis, a constant 
cocluster means all genes in I have the same expression level 
under all experiment conditions in J.

2) Constant-row cocluster: A a 1 I| ,iIJ j Ji
T

i !n= =" ,  where 
1J  is a vector of NJ  ones. Similarly, we can define a 
 constant­column cocluster as A a 1 J ,jIJ i Ij j !;n= =" ,  
where 1I  is a vector of NI  ones. In a constant­row 
 cocluster, elements in each row have the same value, 
while in a constant­column cocluster, elements in 
each column have the same value. In gene expression 
analysis, a constant­row cocluster means each gene 
in I has the same expression level under all condi­
tions in J, but different genes have different expres­
sion levels. A constant­ column cocluster means all 
genes in I have the same expression level for each 

condition in J, but the expression level is different for 
a different condition.

3) Additive cocluster: A a 1 a I, .i qIJ j J ji
T

i q
T ; !n= = +" ,  In an 

additive cocluster, a column can be obtained by adding a 
constant to another column. In gene expression analysis, 
an additive cocluster means that the expression level of 
each gene in I under a condition in J is always increased 
or decreased by a constant under another condition. 
Here, we have defined the additivity in terms of columns. 
It is also possible to define the additivity in terms of rows, 
but such a pattern has not been used in gene expression 
analysis, to our  knowledge.

4)  Multiplicative cocluster: AIJ = a a I,i qj ji
T

i q
T ; !n=" , . In 

a multiplicative cocluster, a column can be ob  tained 
by multiplying another column by a constant. In gene 
expression analysis, a multiplicative cocluster means 
that the expression level of each gene in I under a 
 condition in J is always scaled up or down by a con­
stant under another condition. Again, here we have 
defined the scaling in terms of columns. It is also pos­
sible to define the scaling in terms of rows, but such a 
pattern has not been used in gene expression analysis, 
to our knowledge.
Several numerical examples of these coclusters are 

shown in Figure 3.
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Figure 3. Examples of coclusters: (a) a constant cocluster, (b) a constant-row cocluster, (c) a constant-column 
cocluster, (d) an additive cocluster, and (e) a multiplicative cocluster.
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Figure 2. an illustration of the differences between clustering and coclustering. (a) Clustering involving data 
classification along the sample direction only. (b) Clustering with data classification along the feature direction 
only. (c) Coclustering involving data classification along both sample and feature directions.
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The linear relations (coherence 
among rows or columns) in 2­D 
coclusters can be extended to 
higher­dimensional data. We pro­
vide definitions for 3­D data only 
[25], and these definitions can be 
further extended to higher dimen­
sions in a similar way. Assume 
that our input is a third­order ten­
sor, R ,A aijk

M M M1 2 3!= # #^ h  and that 
a 3­D cocluster, AIJK, contains elements in locations 
I J K , , , , , , , , , .i i i j j j k k kN N N1 2 1 2 1 2I J K# # # #g g g= " " ", , ,  
We define the following 3­D coclusters:
1) Constant cocluster: A I J K| , ,a i j kIJK ijk ! ! !n= =" ,

2) Constant-column-fiber cocluster: 
A 1 J K| ,a j kIJK I Ijk jk ! !n= =" ,

3) Additive-fiber cocluster: 
A 1 a J K, ,a j kIJK I I I( )jk jk 1 ; ! !n= = +" ,  where aI( )1  is the 
first fiber of the co­cluster

4) Multiplicative-fiber cocluster: 
A a J K,a j kIJK I I( )jk jk 1 ! !;n= =" , .
In practical applications, a cocluster pattern often contains 

noise, and the linear relations defined above only hold approxi­
mately. Also, there can be more than one cocluster in the data, 
and we need to determine the index sets I and J for 2­D data or 
I, J, and K for 3­D data for each cocluster.

Coclustering Algorithms
Cheng and Church [1] were the first who introduced cocluster­
ing to gene expression data analysis. In their method, the fol­
lowing cost function is minimized to find a 2­D cocluster 
defined on I J# :

 I J I J( , ) ,C a a a a1
J I

JI
ij i j ij

ji

2
= - - +

!!

r r r^ h||  (1)

where J/ ,a a1J Ji ijj
=

!
r ^ h|  I/ ,a a1I Iij ij=

!
r ^ h|  and aIJ =r  

I J/ a1
JI ijji !!

^ h || represent row average, column aver­
age, and pattern average, respectively, of the cocluster. The 
method can be used to detect constant coclusters. It is inter­
esting to note that in (1), if we remove the row and column 
averages and change the sign of the pattern average, then the 
cost function looks similar to that used for the k­means clus­
tering algorithm.

A number of other coclustering methods have also been 
developed recently [2]–[26]. Most of these methods can be 
applied to 2­D data and deal with a specific type of coclusters 
only. Several review papers provide detailed summaries and 
comparisons of these methods [3], [16], [20].

Our research group has proposed geometric models for 
coclusters [6], [7], [9], [15], [19], [25]. According to the defi­
nitions of 2­D coclusters discussed previously, columns of 
a cocluster can be related by linear equations. Geometri­
cally, these equations correspond to lines, planes, or 
hyperplanes in 2­D, 3­D, or higher­dimensional spaces, 
respectively. If we consider all columns at the same time, 

then we need to find all these 
hyperplanes and determine their 
intersections. The hyperplanes can 
be detected based on the Hough 
transform (HT), which is widely 
used in image processing and pat­
tern recognition [27], [28].

If the input data contain a large 
number of columns, then the HT­
based method that is applied to all 

columns at the same time becomes ineffective because the 
accumulator array for the quantized hyperplane parameters 
is too large. The problem can be overcome if we only consid­
er two columns at a time. Subcoclusters detected from col­
umn­pair spaces can then be merged to form larger ones. 
For 3­D and higher­dimensional data, there will be a 
large number of column pairs. This problem can be solved 
if we transform the input data first using singular­value 
 decomposition (SVD) [25], which will be discussed in the 
next section.

Cocluster Detection in Singular-Vector Spaces
In this section, we describe a coclustering method based on 
hyperplane detection in singular­vector spaces (HDSVS), 
which we have recently developed [25]. This method can be 
used to attend to all of the types of coclusters previously dis­
cussed  and low­rank matrices or tensors in general that are 
embedded in high­dimensional data arrays.

Let us consider 2­D coclusters first. According to their 
definition given previously, an additive cocluster as a matrix 
has rank two, and constant, constant­row, constant­column, 
and multiplicative coclusters have rank one. Applying SVD 
to AIJ, we obtain
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where U, R , and V are matrices containing left singular vec­
tors, singular values, and right singular vectors, respectively. 
Here, we only keep two leading singular  values because the 
rank of AIJ is at most two.

Equation (2) shows that each column aIJ  of AIJ can be 
expressed as a linear combination of singular vectors u1

and u2 :

 u u a .v v Ij j j1 1 1 2 2 2v v+ =  (3)

This set of linear equations represents a line in the u1 and 
u2  space, while elements of u1  and u2  are points on the line. 
Similarly, we can show that each row of AIJ can be expressed 
as a linear combination of singular vectors, v1 and v2, and ele­
ments of v1  and v2  form a line.

In coclustering,  
the data is partitioned 
in both row and 
column directions.
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Note that (3) holds as long as AIJ 
has rank two or less. For example, if a 
column of AIJ is obtained by scaling 
another column and adding a con­
stant, as a combination of additive and 
multiplicative cocluster patterns, AIJ 
has rank two, and (3) is also valid. In 
general, HDSVS can be used to extract 
low­rank patterns embedded in a large 
matrix or tensor.

If the data have noise, we need to 
filter out small singular values. If there 
is more than one cocluster in the data, 
then the rank of the matrix can be 
larger than two, and we need to retain 
more singular vectors. In this case, 
each cocluster will correspond to a 
hyperplane in general in the singular­
vector spaces. When coclusters are embedded in a large 
matrix, rows and columns in the coclusters will be found from 
the detected hyperplanes, while irrelevant elements will be dis­
tributed randomly off the hyperplanes. Different scenarios 
have been discussed in [25].

Let us assume that we have found row indices sets I1  and 
I2  from the hyperplanes detected from left singular vectors 
and column indices sets J1  and J2  from the hyperplanes 
detected from right singular vectors. There are four combina­
tions of these index sets: I ,J1 1#  I J ,1 2# I J ,12 #  and I J .2 2#  It 
is possible that some of these pairs do not correspond to 
coclusters. We can use the following scoring function to select 
coclusters [25]:
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where t represents Pearson’s correlation coefficient between 
two vectors. We consider that a cocluster is identified if S(I, J) 
is less or equal to a prespecified value.

The HDSVS method can be extended to higher­order ten­
sors [25]. The higher­order SVD (HOSVD) [29]–[32] of an 
N­mode tensor RA M M MN1 2! # # #g  is defined as

 U U U ,A B ( ) ( ) ( )
N

N
1

1
2

2
3# # # #g=  (5)

where B  is the core tensor, U( )n  (n = 1, 2, …, N ) contains 
singular vectors, and n#  stands for tensor and matrix mul­
tiplication along mode n. Then, U( )n  can be computed from 
the mode­n unfolded matrix A( )n  of the tensor. In general, 
A( )n  has the size of M M M M Mn n n N1 1 1# g g- +  and is 
obtained by keeping mode n as one dimension and flatten­
ing all other modes to another dimension. The SVD of A( )n  
has the following form:

 A U V ,( ) ( ) ( ) ( )n n n n TR= ^ h  (6)

where U( )n  and V( )n  are matrices for 
the left and right singular vectors, 
respectively, and ( )nR  is a diagonal 
matrix containing singular values. 
For n = 1, 2, …, N, we only need to 
compute U( )n  and not V( )n  to obtain 
(5). The decomposition of a three­
mode tensor is illustrated in Figure 4.

By detecting hyperplanes in the 
singular­vector space with U( )n , we 
can then find indices sets along 
mode n for cocluster identification. 
An example is shown in Figure 5. 
The index sets along three modes 
are I, J, and K for 3­D data, and they 
should be understood as ,I( )1  I ,( )2  and 
I( )3  in a general notation. Assume 
that an index set along mode n  

is I ;( )n  then, the scoring function in (4) can be extended to 
higher dimensional coclusters:
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Examples
As an example, we show an eight­by­five matrix in Figure 6(a). 
The highlighted elements in the matrix form a general linear 
cocluster, which is a combination of additive and multiplicative 
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Figure 4. the decomposition of a three-mode tensor 
using HOSVD. U1 can be found by unfolding A to an 
M M M1 2 3#  matrix and computing the left singular 
vectors of this matrix. U2 and U3 can be computed in 
similar ways.
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Figure 5. the detection of coclusters in singular 
vector spaces. In this diagram, AIJK  is a cocluster 
embedded in a large tensor A. the index sets 
I, J, and K can be determined by searching for 
hyperplanes based on U1, U2, and U3, respectively.

The concept of 
coclustering was 
introduced in the 
1970s, but it has 
only gained much 
attention recently 
due to its useful 
applications to 
genomic data 
analysis.
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patterns. Column 4 is obtained by 
scaling column 1 by 0.9 and adding a 
constant 10, and column 5 is obtained 
by scaling column 1 by 1.2 and adding 
a constant 23. These additive and 
multiplicative relations are approxi­
mate because the cocluster is cor­
rupted by noise. Moving columns 1, 4, 
and 5 together [Figure 6(b)], we can 
see a ramp pattern with increasing 
value from the upper left to the lower 
right. Values of elements in the coclu­
ster are distributed in the range 
19–89, while those in the background (irrelevant elements) are 
in the range 19–99 plus an outlier with value 5. So there is no 
easy way to determine which elements belong to the cocluster 
from just the values.

The linear relations among the columns in the cocluster 
in Figure 6(a) correspond to hyperplanes in a five­dimen­
sional space. In practical applications, the number of 

columns would be much larger, and 
it would be difficult to detect the 
hyperplanes and find intersections 
of them with all column variables at 
the same time. Alternatively, we can 
consider each column pair at a 
time. Column pair 1–2 contains only 
scattered points as shown in blue in 
 Figure  6(c). One may argue that 
points in rows 2, 3, and 7, i.e., (76, 
78), (26, 43), and (92, 90), are 
approximately collinear. We can 
specify the minimum number of 

rows required for a cocluster, four in this case, to filter out 
noisy components. Further filtering can be done by specify­
ing the minimum number of columns required. For column 
pair 1–4, we detect a long line with five points in rows, {1, 3, 
4, 6, 8}, which corresponds to row locations of the cocluster. 
The line detection can be done using the HT in general. We 
will obtain the same results for  column pairs 1–5 and 4–5. 
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Figure 6. an illustration of 2-D cocluster detection. (a) a noisy cocluster with the combination of additive 
and multiplicative patterns embedded in a matrix with large variations in the background. (b) the column 
pairs 1–2 (blue) and 1–4 (red). (c) a long line close to five points is detected in the space of column pair 1–4. 
(d) the points shown in the u u u- -1 2 3 space. a hyperplane close to six points is detected. (e) the points shown in 
the v v v- -1 2 3 space. a hyperplane close to three points is detected.

In HDSVS, the removal 
of small singular 
values can reduce the 
number of variables 
for hyperplane 
detection.
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Therefore, we find that a cocluster 
exists in {1, 3, 4, 6, 8} # {1, 4, 5}.

In this example, the column­pair­
based method works well. For a 
matrix with M2 columns, there are 
M2(M2 – 1) column pairs, and to 
combine the results from all these 
column pairs can be complicated. 
One may think many column pairs 
are redundant. In the example here, 
we can obtain the column indices {1, 
4, 5} from column pairs 1–4 and 1–5 
without considering 4–5. However, 
in more complex cases, due to noisy and multiple and over­
lapping coclusters, the column pairs may not produce the 
same results; therefore, it is difficult to determine which pairs 
are redundant.

We can consider all columns at the same time using 
HDSVS. First, we compute the SVD of the input matrix. The 
singular values of the example in Figure 6(a) are 358.56, 89.39, 
54.81, 23.69, and 12.84. It is reasonable to retain the first three 
large singular values and remove the two smallest ones to fil­
ter out noise. Although the cocluster has a rank of two, we 
usually obtain better results by retaining slightly more singu­
lar values. In Figure 6(d), we consider singular vectors u ,1  u ,2  
and u3 corresponding to the three retained singular values. In 
the u u u- -1 2 3 space, we detect a hyperplane close to 

, ,u u u11 12 13^ h, , ,u u u1 2 33 3 3^ h, , ,u u u1 2 34 4 4^ h, , ,u u u1 2 36 6 6^ h, and 
, ,u u u1 2 38 8 8^ h. Similarly, in the v v v- -1 2 3 space, we detect a hyper­

plane close to , , ,v v v11 12 13^ h  , , ,v v v41 42 43^ h  and , ,v v v51 52 53^ h  [Fig­
ure 6(e)]. Therefore, a cocluster exists in {1, 3, 4, 6, 8} # {1, 4, 5}.

In HDSVS, the removal of small singular values can reduce 
the number of variables for hyperplane detection. If the 
matrix is large and the coclusters are small in size, the reduc­
tion will be significant. Hyperplane detection is a key step in 
HDSVS. This can be done using the HT or the linear grouping 
algorithm [25].

Although the matrix in this example only has the size of 
eight by five for the purpose of illustration, the computation­
al procedure for a larger data size is the same. In our work on 
gene expression data analysis, many experiments were car­
ried out with large data sets, and more examples can be 
found in [6], [7], [9], [14], [15], [19], and [25]. To improve com­
putational speed, graphics processing units and specially 
designed hardware, such as field programmable gate arrays, 
can be employed [22], [23].

Discussions and Conclusions
Coclustering is useful for genomic data analysis. In add ­
ition, it has many other applications [3], [16], some of 
which are

 ◆ analysis of consumer spending patterns to discover a sub­
set of consumers who like to purchase products from a 
subset of companies

 ◆ analysis of financial data to find a subset of sectors that have 
similar economic growth patterns in a subset of regions

 ◆  analysis of chemical compo­
nents in food to determine a 
subset of components (nutri­
ents or toxicants) in a subset of 
food types

 ◆  analysis of web documents to 
search for a subset of documents 
that contain a subset of keywords 
in a  subset of locations

 ◆  analysis of training data in 
ma chine learning to extract a 
subset of features that are rele­
vant to a subset of  features.

In [8], we analyzed foreign exchange data over 120 
months and found currencies with correlations in some 
but not all time periods. Some of the coclusters reveal 
that several currencies had similar rapid movement pat­
terns in the early stage of the Asian financial crisis in late 
1990s. In [26], we used coclustering to select Gabor wave­
let features of images for facial expression classification. 
There are thousands and even tens of thousands of fea­
tures to compute for a full set of Gabor wavelets with dif­
ferent scales and orientations in different locations of a 
face image. With the type of facial expression in one 
direction and the Gabor wavelet feature in another direc­
tion, we performed cocluster analysis of the feature data. 
From the coclusters, we can retain relevant features for a 
facial expression and discard all other features. With 
only 20% of the features selected this way, we have 
obtained an even higher classification rate than that from 
the entire set of features. The reason for the improved 
performance is that, through coclustering, we can 
remove irrelevant and noisy features and enhance the 
feature quality. It is interesting that a reasonable accura­
cy can still be achieved even when we retain only 0.9% of 
the original features.

This example of facial expression feature selection 
is especially encouraging. In traditional machine­learn­
ing and pattern­recognition methods, all features are 
used to build a classifier. In practical applications, if 
our input data contain a large number of features, a sub­
set of features may be useful for only a subset of class­
es, and another subset of features may be useful for 
just another subset of classes. In these cases, feature 
selection is a combinatorial problem. Coclustering pro­
vides a systematic and robust method to deal with big 
data sets and select relevant and important features. 
This procedure can be used to filter out noise, improve 
classification performance, and reduce the computing 
time significantly.

In summary, coclustering provides classifications 
simultaneously in all directions of a multidimensional 
data array. It may be used to detect coherent patterns 
that are embedded in a large matrix or tensor and con­
tain a subset of elements in each direction. It can be 
performed  effectively in singular­vector spaces based 

Coclustering provides 
classifications 
simultaneously in 
all directions of a 
multidimensional 
data array. 
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on hyperplane detection. We expect that coclustering 
will gain more and more applications in machine 
lear n ing, image processing, bioinformatics, and big 
data analytics.
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