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a b s t r a c t 

Robust visual tracking remains a technical challenge in real-world applications, as an object may involve 

many appearance variations. In existing tracking frameworks, objects in an image are often represented 

as vector observations, which discounts the 2-D intrinsic structure of the image. By considering an im- 

age in its actual form as a matrix, we construct the 3rd order tensor based object representation to 

preserve the spatial correlation within the 2-D image and fully exploit the useful temporal information. 

We perform incremental update of the object template using the N-mode SVD to model the appearance 

variations, which reduces the influence of template drifting and object occlusions. The proposed scheme 

efficiently learns a low-dimensional tensor representation through adaptively updating the eigenbasis of 

the tensor. Tensor based Bayesian inference in the particle filter framework is then utilized to realize 

tracking. We present the validation of the proposed tracking system by conducting the real-time facial 

expression recognition with video data and a live camera. Experiment evaluation on challenging bench- 

mark image sequences undergoing appearance variations demonstrates the significance and effectiveness 

of the proposed algorithm. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Visual tracking in image sequences is amongst the dominant

ottom-up units in computer vision applications such as surveil-

ance, robotics, intelligent transportation, and human computer in-

eraction (HCI). A critical requirement of these applications is to

rack the desired target region of interest for a long period in

nconstrained environments. For instance, in face based-HCI (fa-

ial expression or identity recognition), the need for accurate face

racking along with head orientations has been widely acknowl-

dged ( Jo, Lee, Park, Kim, & Kim, 2014 ). Despite much progress in

isual tracking and endeavours to improve face based-HCI, mod-

lling the appearance variability of target remains imperative due

o the intrinsic (e.g. pose variation deformations in shape, scale,

nd out-of-plane rotations) and extrinsic (e.g. occlusions, illumina-

ion changes, and different camera viewpoint) variations. 

Many researchers have attempted to address these issues in vi-

ual tracking and proposed various complex models to deal with

arget appearance variations ( Wu, Lim, & Yang, 2015 ). These stud-
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es revealed the performances of existing methods, each of which

as its own advantages and drawbacks ( Smeulders et al., 2014 ). In

isual tracking for face based-HCI such as facial expression recog-

ition (FER), template drift ( Matthews, Ishikawa, & Baker, 2004 ) is

ne of the common issues because of the accumulation of small

rrors in the template updating process. For effective appearance

epresentation of a target face, frequent template update is usu-

lly necessary to cope with varying pose and head orientations.

n inadequate updating strategy will ruin the purpose of appear-

nce representation. In order to obtain a good trade-off between

he processing time and accuracy of tracker, the template-updating

rocess must be developed carefully. 

Secondly, the template-updating strategies based on the image-

s-vector form ( Ning, Yang, Jiang, Zhang, & Yang, 2016; Ross, Lim,

in, & Yang, 2008 ) ignore the fact that image is intrinsically a ma-

rix, or a 2nd order tensor. A significant amount of spatial corre-

ation within the original structure of a 2-D image remained un-

xploited in the image-as-vector form, which makes the appear-

nce model less discriminative in tracking against occlusions. Al-

ernately, the multiway or tensor based image representation can

rovide a better appearance structure for tracking by preserving

he actual 2-D structure of an image to facilitate visual tracking. 

This paper focuses on building a tracking system based on

he tensor framework and presents a real-time application for fa-
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Fig 1. The architecture of the proposed online spatio-temporal tensor based learning model for visual tracking. 

Fig 2. Tensor unfolding in respective modes and the analogous association with an image in terms of slices. 
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cial expression recognition. An important aspect of object mo-

tion in videos is their local similarity among several regions of

the same frame. More importantly, an object in video also pos-

sesses the strong temporal correlation among succeeding frames.

Based on these spatial and temporal correlation priors of a video,

we construct the spatio-temporal tensor appearance model for ob-

ject tracking. The proposed method effectively combines the dy-

namic model with a robust online tensor based eigen-basis updat-

ing strategy to better cope with scaling and geometric normaliza-

tion issues of human faces, which is a key step in face-based HCI

systems. 

Performing the proposed learning procedure using the tensor

representation will not only preserve the 2D structure of an image

but also significantly circumvent the large dimensionality problem.

For example, it can convert a 3rd order tensor of size 30 × 30 × 30

to a smaller dimension of 10 × 10 × 10. The image-as-vector form

would require a 27,0 0 0 × 10 0 0 basis matrix, but the tensor formu-

lation requires only three sets of 30 × 10 basis matrices. Intuitively,

the tensor based learning along with effective appearance updating

yields fast and more reliable target localization, which is useful for

building a robust real-time FER system. 

1.1. Related works and context 

A variety of tracking approaches have been proposed to achieve

improved robustness, accuracy and computational efficiency. How-

ever, the performance of most trackers is constrained with certain
onditions which makes them inapt for real applications ( Wu et al.,

015 ). Discriminative and generative appearance models are widely

ccepted tracking approaches that effectively model the target

ppearance based on spatial information. Discriminative trackers

reat a tracking task as a classification problem and discrimi-

ates the target from surroundings. Following the discriminative

ramework, an online supervised boosting method was proposed

 Grabner & Bischof, 2006 ), whereas the semi-supervised tracker

as introduced in ( Grabner, Leistner, & Bischof, 2008 ), in which

nly the initial frame label was provided. Later Babenko, Yang, and

elongie (2009) introduced the Multiple Instance Learning (MIL)

racker to deal with unreliable positive and negative labels in an

nline manner and uncovered the drift issues in tracking. Recently

he work presented in Ning et al. (2016) proposed the online struc-

ured support vector machine based discriminative tracking frame-

ork with fast learning and addressed the drift issues. The au-

hor in Bae, Kang, Liu, and Chung (2016) presented real-time object

racking framework based on discrete swarm optimization. How-

ver, the proposed strategies cannot deliver the orientation infor-

ation of the target, or the degree of rotation of the tracking win-

ow. 

On the other hand, several methods made use of the appear-

nce modelling of an object based on the generative framework

 Black & Jepson, 1998; Hu et al., 2011; Ross et al., 2008 ). Among

hem, sub-space learning-based models have gained much atten-

ion in visual tracking against model drifting due to the constant

ubspace assumption instead of the constant brightness assump-
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ion. Moreover, the task of subspace learning is memory efficient,

hus yielding comparatively faster processing. For instance, authors

n Black and Jepson (1998) proposed view-based appearance mod-

ls for tracking with sub-space learning. A view-based eigenbasis

odel of the target is trained off-line and tracking is performed

n matching sequential views of a target. However, the lack of

raining samples along with maximum possible viewing conditions

s still a challenging task. The work presented by Lim, Ross, Lin,

nd Yang (2004) accomplished tracking by incremental subspace

earning, in which target subspace is updated during the tracking

rocess to deal with appearance changes. Their work developed

n updating strategy by extending the SKL (sequential Karhunen–

oeve) algorithm ( Levy & Lindenbaum, 20 0 0 ) but focused only on

he similarity between candidate and target subspace. 

Later, Ross et al. (2008) introduced an adaptive image-as-vector

ubspace learning model Incremental Visual Tracker (IVT), which

ained much popularity. The IVT introduced the eigenbasis and

ean updating strategy in tracking for updating the appearance

ariations sequentially. The template-updating strategy followed in

VT flattens the target regions to retain the vectorised shape, which

ields the extrinsic information about the target subregions. Sev-

ral other improved versions ( Hu et al., 2011 ) of this model were

urther proposed. However, their performances degraded in un-

estricted conditions. Extended version of IVT was proposed by

ang, Lu, and Yang (2013) under the Gaussian-Laplacian noise as-

umption to enhance the robustness in the presence of outliers.

he representation of a target by the flattened intensity vector can

esult in a large dimensionality. 

In visual tracking, the multilinear extension of object track-

ng based on online leaning is also introduced to capture spatio-

emporal appearance and has gained much success. For instance,

n online tensor decomposition based tracking framework was

eported by Hu, Li, Zhang, Shi, Maybank, and Zhang (2011) , in

hich target image-as-matrix is proposed for a better repre-

entation of spatial layout. For incremental updating, the R-SVD

 Van Loan, 1996 ) approach is utilized to update the subspace

long with sample mean against each tensor mode. However,

he process of updating only considered the top eigenvalues and

igenvectors and small weights were discarded in order to meet

he real-time requirements, which may cause error accumulation

nd model drift. Recently, the author in Ma, Huang, Shen, and

hao (2016) proposed the incremental tensor learning based pool-

ng strategy and considered the target and template as sparse cod-

ng tensors. Although good results are achieved on tracking image

equences by using tensor pooling, however, a major concern of

PT is its extensive computing procedure consisting of: (1) the 4th

rder online tensor learning along with the 3rd order direct tensor

ecomposition on every upcoming frame. (2) K-means based dic-

ionary learning in tensor pooling. These factors result in slower

racking frame rate and therefore make it feasible mainly for of-

ine tracking. 

An incremental N-mode SVD was proposed in Lee and

hoi (2014) and tested on 3D face reconstruction to update the

esult of N-mode SVD with the arrival of new training data. The

ncremental N-mode SVD presented full factorization and more ac-

urate calculation of the eigenstructure of the training tensor. In

his work, we focus on N-mode SVD for incremental learning for

nline visual tracking. Unlike TPT, which uses the standard R-SVD

o calculate the entire N-mode immediately, we conduct separate

patial and temporal factorization of the appearance tensor and

dopt the incremental N-mode SVD for calculating the eigenstruc-

ure of the unfolded matrices. Our method captures variants of

very mode independently for calculating the residue error pre-

iction of Bayesian posterior probability. Compared with other in-

remental tensor subspace learning and vector-based methods, N-

ode SVD delivers more accurate approximation of the unfolded
ensors in each mode and updates the target appearance variations

ore effectively. Thus, it makes the tracking more robust against

ariations in pose, geometry and illumination. 

For the task of expression recognition, the face detectors are

sually employed to extract the facial region first. A well-known

etection algorithm by Viola and Jones (2004) is extensively used

ver the years, which works on learning the classifiers based on

aar features. Despite the high detection rate of this technique, the

erformance degrades noticeably for occluded and profile faces. A

eal-time facial expression approach was presented ( Geetha, Rama-

ingam, Palanivel, & Palaniappan, 2009 ), in which head contours

ere extracted to locate the face region in images. Color space in-

ormation is further utilized to extract the location of face parts

nd then expression recognition is performed. This method heavily

epends on morphological image operations such as thresholding

f image pixel values and is therefore not suitable for low intensity

nd occluded images. ( Wan, Shaohua, & Aggarwal, 2014 ) proposed

 robust metric learning approach for spontaneous facial expres-

ion recognition, and ( Owusu, Zhan, & Mao, 2014 ) developed a fa-

ial expression analysis system based on neural-AdaBoost. Recently

he authors in Ali, Hariharan, Yaacob, and Adom (2015) used em-

irical mode decomposition to conduct facial expression recogni-

ion. In these reported studies, face detection was performed indi-

idually on every frame. To deal with the face orientation changes,

enerally several pre-processing techniques are combined carefully

ith this face detection framework to register the faces based on

he locations of eyes and nose before the expression recognition.

owever, this stage demands accurate detection of facial parts,

hich is generally not possible in real-time applications. 

Contributions: Based on the above-mentioned discussion, the

orrelation between the motion of object and its context is still

ard to capture. We propose to address the visual tracking problem

ith an effective online spatio-temporal tensor learning frame-

ork, which not only takes into account the spatio-temporal infor-

ation but also effectively combines the updating procedure with

ppearance modelling to achieve real-time tracking. The proposed

racking algorithm produces a low dimensional tensor representa-

ion of the target online by following an incremental update pro-

edure of the mean and eigen-basis using the N-mode SVD of un-

olded matrices. When estimating the target, the likelihood of a

andidate is evaluated on the learned tensor subspace repeatedly

ased on the reconstruction error to avoid missing the target posi-

ion. The spatio-temporal appearance feature and fast incremental

pdate provide an improved tracking performance along with bet-

er computational efficiency when compared to vector based sub-

pace methods. Then we specifically designed a real-time FER sys-

em based on the proposed tracking strategy. The tracking window

btained from the proposed tracker is further processed to align

he face geometry and then the task of expression recognition is

erformed. Experiments revealed that the integrated system per-

orms effectively in both recorded videos as well as on live camera

nabled videos. 

The remaining of this work is organized as follows. In Section 2 ,

e describe the material and methods utilized in our proposed

ramework with a complete outline of our tracking approach.

ection 3 provides experiment results of the proposed tracking

lgorithm. Section 4 discusses the applications of FER using our

ethod. Finally, we present the conclusion in Section 5 . 

. Proposed framework for tracking 

.1. Outline of our tracking method 

The proposed tracking framework is built on three main stages

s shown in Fig. 1: (a) spatio-temporal tensor based target ap-

earance model, (b) Bayesian inference coupled with particle filter,
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Table 1 

The incremental N-mode SVD algorithm for updating the tensor based appearance 

model. 

Algorithm 1: Incremental N-Mode SVD 

Function: Incremental N-Mode SVD ( C (k ) , U k , A (k ) , B (k ) , M k , f f, t) 

Input: Unfolded core tensor C ( k ) , projection matrix U k , unfolded stacked 

tensor A ( k ) , unfolded newly added tensor B ( k ) , forgetting factor ff, updated 

mean M k , time t. 

Repeat 

If t = 0, then: 

1: Apply HOSVD using Eq. (2) to get [ U n , C (n ) ] 

2: M (t) = 

n a 
n a + n b A (k ) + 

n b 
n a + n b B (k ) the mean of concatenated matrices A (k ) 

and B (k ) 

3: t = t + 1 

Else: 

1: Apply N-mode updating strategy: 

(a) Spatial update (when k � = N ); Eqs. (4 )–( (7) ) 

(b) Temporal update (where k = N); Eqs. (8 )–( (11) ) 

2: M (t) = 

n a 
n a + n b A n + 

n b 
n a + n b B n 

3: t = t + 1 

End if 

Iteration until the end of video. 

End 
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and (c) N-mode SVD for incremental updating tensor. In Fig. 1 (a),

we propose a tensor based approach to construct the target tem-

plate appearance as a reservoir of 3rd order tensors. A tensor is

initially decomposed using Higher-Order Singular Value Decompo-

sition (HOSVD) ( Kolda, Tamara, & Brett, 2009 ), where the appear-

ance model only takes into consideration of the initial region of in-

terest to be tracked in subsequent frames. In Fig. 1 (b), we consider

the tracking problem in a generative framework as an online ten-

sor learning task. An accurate subspace representation is learned

online, and the updating procedure is carried out in the tempo-

ral direction. The processes (b) and (c) are combined such that the

subspace of the target is computed by incremental N-mode SVD

over the target’s intensity-value template and is stored in a leak-

ing memory to gradually forget old observations. The procedure is

summarized in Table 1 . Sampling of the candidate window, which

is assumed to follow a Gaussian distribution around the preceding

position, is carried out by using particle filtering. When predict-

ing the target, the confidence of each sample in terms of distance

from candidate to learned tensor subspace is computed. The sam-

ple with lowest error is then selected. Furthermore, the error re-

construction stage allows us to repeat the sampling when the con-

fidence level is not sufficient enough to identify the candidate as

the target. The whole process is repeated, where the new frame

is added to the reservoir and the last frame is removed to pro-

vide sufficient spatiotemporal information and to avoid unneces-

sary storage. 

2.2. Tensor decomposition 

A higher order tensor can be viewed as a generalization of a

vector (first-order tensor) and a matrix (second-order tensor). An

N -th order tensor can be denoted as A ε R 

I 1 ×I 2 × ··· ×I N , each ele-

ment of which can be represented as a i 1 ···i n ···i N for 1 ≤ i n ≤ n N .

The n -mode ( N th dimension) matrix unfolding of a tensor A , de-

noted as A (n ) ε R 

n n × ( 
∏ 

i � = n n i ) , is obtained by fixing the index term

i n while unfolding all other modes and combining all other indices

into one index. For better visualization, let us consider the pro-

cess of unfolding the tensor D into its 1st, 2nd and 3rd modes.

The mode- n folding process of a tensor is the reverse process of

mode- n unfolding, which restores the actual tensor. The entries of

the mode- n product of A and a matrix M ε R 

n n ×m n 
M 

are: 

( A ×n M ) i 1 ···i n −1 i m n i n +1 ···i N = 

∑ 

i 
a i 1 ···i n ···i N M n n m n 

(1)

n 
In a tensor and matrix multiplication, the resulting tensor C can

lso be computed by matrix multiplication C (n ) = M A (n ) followed

y mode- n folding. Note that for tensors and matrices of the ap-

ropriate sizes, A ×m 

M ×n N = A ×n N ×m 

M and ( A ×n M ) ×n N =
 ×n ( MN ) . 

HOSVD is a multilinear extension of the conventional matrix

ingular value decomposition (SVD). For an N -th order tensor,

OSVD produces N orthonormal matrices, U 

(1) ,U 

(2) ,…U 

( N ) , span-

ing N spaces. An N -th order tensor A ε R 

I 1 ×I 2 × ··· ×I N can be de-

omposed as follows: 

min 

, U ( 1 ) , U ( 2 ) , ... U ( N ) 

∥∥A − C ×1 U 

( 1 ) ×2 U 

( 2 ) . . . ×N U 

( N ) 
∥∥ (2)

here C ε R 

R 1 ×R 2 × ··· ×R N is called the core tensor, and U 

(n ) ε R 

I n ×R n 

ontain singular vectors. The solution of the above equation can be

iven by Tucker Decomposition ( Tucker, 1966 ), which is the pre-

iminary step in obtaining the start-up tracking procedure and in-

remental tensor learning in our tracking algorithm. 

.3. Online tensor learning for tracking 

Online tensor learning model for tracking is built from the

treaming data. The first K target frames warped from sliding data

re stored in terms of image gray levels in the initial window as

 ε R 

I 1 ×I 2 ×I 3 , where I 1 and I 2 are the width and height of target

nd I 3 is the number of frames stacked in the tensor. Subsequently,

he tensor A is decomposed using HOSVD into three orthogonal

paces by three orthonormal matrices U 1 , U 2 , and U 3 . When a

ew frame comes from the video stream, the last frame from the

liding block is removed. For each new frame, we may only need a

ortion of the mode matrices to further compute the SVD, rather

han re-computing the whole tensor. Incremental SVD, in this case,

erves the purpose to update the previous mode matrices with the

rrival of new data. 

The classic R-SVD algorithm operates on newly accessorial

olumns and rows in the matrix, but is based on the zero mean

ssumption. In multi-linear generalization ( Lee & Choi, 2014 ) in-

roduced the N-mode SVD to compute the eigen-basis of a tensor

ith the mean update ( Hall, Marshall, & Martin, 2002 ) and there-

ore can keep tracking the subspace variations in each mode. For

ncremental updating of basis matrices, the incremental N-Mode

VD ( Lee & Choi, 2014 ) is utilized. An extensive procedure for the

ncremental N-Mode SVD is followed to compute the eigen-basis

ith mean updating simultaneously. The process is summarized

n Table 1 . This algorithm can approximate the N-mode SVD ef-

ciently with less memory and operate on a smaller portion of

ata each time from a relatively larger dataset. In this section, we

rovide an overview of N-Mode incremental update adapted for

ensor based appearance model in context of visual tracking. The

omplete derivation of mode matrices can be found in Lee and

hoi (2014) . 

After preparing the reservoir tensor, let A ε R 

I 1 ×I 2 × ··· ×I a n be the

urrent tensor, and B ε R 

I 1 ×I 2 × ··· ×I b n be the data tensor with new

ideo frame added, then the incremental procedure includes up-

ating the mean and the total number of samples. A and B can

e concatenated to form: D = [ A B ] N , where Dε R 

I 1 ×I 2 × ··· × (I a n + I b n ) .

e only need to compute the k -mode projection matrix U k of D
and the unfolding matrix D k for k = 1, 2…N − 1. The process is il-

ustrated in Fig. 2 , where three identical tensors are shown along

ith their respective unfolded matrices in three modes. The white

egion corresponds to the original tensor whereas the shaded por-

ion represents the newly added tensor. 

In order to update the appearance tensor based on previous

rojection matrices, when a new sample arrives, the incremen-

al update procedure mainly consists of two parts: (1) spatial up-

ate, and (2) temporal update. In spatial update, we consider only
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ode-1 and mode-2 unfolding of the tensor for updating. In tem-

oral update, we consider the third mode for updating and the

rocess is slightly different. The steps below formulate the factor-

zation of both parts. 

(1) Spatial update (when k � = N) 

In the incremental procedure for unfolded tensor in mode-1

nd mode-2, we compute the new projection mode matrix U ∗
k 

=
 U k Q k ] U ′ 

k 
, where Q k = orth ( B (k ) − U k U T k 

B (k ) ) and orth () is ob-

ained by the standard QR decomposition ( Hall et al., 2002 ). The

oncatenation of previous tensor and newly arrived frame can be

ormed as: = [ A B ] k , replacing the tensor with projection matri-

es and core in the first two modes as: 

 = 

[ 
U k C ( k ) 

(
� j � = k U j 

)T 
B ( k ) 

] 
(3) 

 = [ U k Q k ] 

[
C ( k ) U 

T 
k 

B ( k ) 

0 Q 

T 
k B ( k ) 

][ 
U k C ( k ) 

(
� j � = k U j 

)T 
B ( k ) 

] 
(4) 

U 

′ 
k = orth 

([
f f ∗C ( k ) U 

T 
k 
B ( k ) 

0 Q 

T 
k B ( k ) 

])
(5) 

 

∗
k = 

[ 

U k orth 

( [ 

f f D ( k ) 

√ 

f f ∗n a ∗n b 

f f ∗n a + n b 

(
Ā − B̄ 

)] ) ] 

∗U 

′ 
k (6) 

here ff is the forgetting factor ( Ross et al., 2008 ) for concentrating

ore effect on newly arrived sample. 

(2) Temporal Update (where k = N) 

For incremental update of 3rd mode, the updating structure for

 

∗
N 

is different from the spatial structure in terms of concatenation

nd can be given as: 

 = 

[
A 

B 

]
k = N 

(7) 

 = 

[
U N 0 

0 E 

][
C N 

(
� j � = N U j 

)T 

B ( N ) 

]
(8) 

 

′ = B ( N ) 

(
� j � = N U j 

)
C 

T 
N (9) 

 

∗
N = 

[
U N 0 

0 E 

]
orth 

([
C N C 

T 
N B 

′ T 
B 

′ B ( N ) B 

T 
( N ) 

])[
C N 

(
� j � = N U j 

)T 

B ( N ) 

]
(10) 

Instead of using the standard R-SVD ( Hall et al., 2002 ) that cal-

ulates the entire N-mode U new 

immediately, we propose to uti-

ize spatial as well as temporal factorization of appearance tensor

odel that is updated dynamically using N-mode SVD. Tracking is

chieved by the actual factorization of each unfolded matrix. The

ethod provides an accurate approximation by keeping the dom-

nant singular subspaces of current updating model. It incremen-

ally builds Gaussian mixture models on each mode to describe the

ata falling into several classes in spatial domain and temporal do-

ain incorporating the tensor multi-linear representations. 

In the tracking framework, the newly arrived sample is cate-

orized by evaluating its likelihood with the estimated subspace.

he likelihood can be determined by the sum of the reconstruction

esidual error norms of the predictive Gaussian distribution. By the

eans of the notation of orthogonality in the tensor decomposi-

ion, we associate the dynamic Bayesian inference to approximate

he distribution over the location of target. Let X̄ be the mean of

bservations, where X represents the center of the distribution for

ach class. Assume g k = U 

T 
k 
( X − X̄ ) , which represents the shift of

bservations to the mean X̄ . The residual error vector H k , orthogo-

al to every vector in U k , is given by: 

 k = 

(
X − X̄ 

)
− U k U 

T 
k 

(
X − X̄ 

)
(11) 
The sum of residual error norms of a predictive state can be

epresented as: 

rror = 

2 ∑ 

k =1 

∥∥(
X ( k ) − X̄ ( k ) 

)
−

(
X ( k ) − X̄ ( k ) 

)
×k 

(
U k U 

T 
k 

)∥∥2 

+ 

∥∥(
X ( N ) − X̄ ( N ) 

)
−

(
X ( N ) − X̄ ( N ) 

)
×N 

(
U N U 

T 
N 

)∥∥2 
(12) 

.4. Tensor likelihood Bayesian inference 

We use online tensor learning to model the tracking process

nder the assumption that the object state in the tracking frame-

ork exhibits the Markov chain state transition process, where the

resent state can be effectively estimated from its past states. In

his model, the motion of target among consecutive frames is usu-

lly considered as an affine motion. Assume that a given state of

arget is X t = { x t ,y t , θ t , s t , β t , ϕt } at time t, where the parameters are

he x and y translations, rotation angle, scale, aspect ratio, and

kewness, respectively. Now we consider the tracking formulation

n Bayesian filtering framework, in which the hidden state of X t 

f the target object at each time t is estimated with one of the k

mage observations Z = { Z 1 , Z 2 , . . . Z k } , { Z t | t = 1, 2…k }. Under this

ramework, the filtering Bayesian estimate of posterior P( X t | Z t ) can

e given as: 

 ( X t | Z t ) ∝ P ( Z t | X t ) 

∫ 
P ( X t | X t−1 ) P ( X t−1 | Z t ) d X t−1 

(13)

here P ( Z t | X t ) refers to the observation likelihood at time t , and

 ( X t | X t − 1 ) corresponds to the motion model. In order to approxi-

ate the distribution over the target position and to draw the set

f samples X = { X (i ) 
t } N s 

i =1 
, particle filter ( Isard & Blake, 1996 ) is uti-

ized. The optimal object state of the target X 

′ 
t in the present frame

an be inferred by the maximum a posteriori (MAP) criterion: 

 

′ 
t = argmax X t εX P ( X t | Z t ) (14) 

In our implementation, the residual error determines the mea-

ure of similarity among candidate and the learned subspace. Thus,

( Z t i | X t ) in our case is given by: 

 ( Z t i | X t ) ∝ exp ( −error ) (15) 

. Experiments 

For performance evaluation, the proposed online spatio-

emporal tensor learning based tracker is validated on seven

hallenging videos. The chosen sequences comprise of various

ariations, including partial occlusion, pose and scale variations,

llumination changes, background cluttering, rotations and im-

ulse motions. For comparison, we conducted experiments on

everal related tracking methods. (1) Fragments-based tracking

FRAG Tracker) ( Adam, Rivlin, & Shimshoni, 2006 ) (2) Vector sub-

pace learning-based tracking algorithm (IVT tracker) ( Ross et al.,

008 ). (3) Adaptive structural local sparse appearance model (ASLA

racker) ( Jia, Lu, & Yang, 2012 ), (4) Discriminant tracker based

n circulant structure with kernels (CSK Tracker) Henriques, Ca-

eiro, Martins, & Batista, 2012 ), and (4) Sparsity based collaborative

odel for tracking (SCM Tracker) ( Zhong, Lu, & Yang, 2012 ). For

 fair comparison, the proposed tracker is evaluated against these

ethods using the results provided by authors in the benchmark

 Wu et al., 2015 ). In our experiments, the target region obtained

rom the video frames is normalized to the size of 32 × 32 pixels,

nd an initial tensor of length 15 in the 3rd mode is built for the

epresentation of object appearance. The forgetting factor in the in-

remental N-mode SVD is set to 0.9, where the number of particles

n the particle filter is set to 500. The assigned affine parameter

alues are [9,5,0.05,0.005,0,0]. 
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Fig 3. Screen shots of tracking results obtained by our method from key frames on face based videos in challenging sceneries. 

Table 2 

Comparison of tracking results obtained using existing trackers and the 

proposed tensor based tracker (TTracker) in terms of position error on 

seven videos. The best and second best results are shown in bold and 

italic fonts respectively. 

Sequences Tracking Methods 

IVT CSK ASLA SCM Frag TTracker 

David 11.44 38.52 5.59 22.13 91.57 5.17 

Fish 18.22 7.32 3.40 6.32 25.21 5.08 

Mhyang 7.44 9.12 2.03 8.85 15.51 1.91 

Twinnings 10.75 10.23 16.73 8.04 22.47 9.24 

Clifbar 59.46 47.54 57.51 31.67 40.83 44.87 

Dudek 10.03 19.76 14.95 27.61 87.70 9.49 

Faceocc1 18.74 17.45 78.16 22.06 51.88 15.98 

Average 19.44 21.42 25.48 18.09 47.88 13.09 
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3.1. Evaluation 

As discussed above, the proposed methodology based on the

image as a 2nd order tensor and appearance model as a 3rd order

tensor can preserve more compact and useful information as com-

pared to an image represented as a vector. In addition, the incre-

mental N-mode SVD delivers a more robust tensor updating pro-

cedure. To evaluate the effectiveness of our proposed schemes, we

present both quantitative and qualitative comparison with related

methods against dominant challenges, such as occlusion, illumina-

tion changes, target scaling (deformation) and rotations. 

3.1.1. Quantitative analysis 

We used the conventional metric position error, precision plots

of one pass evaluation (OPE) and success plot of OPE ( Wu et al.,

2015 ) to evaluate the tracking performance. The tracking windows

obtained from IVT, FRAG, CSK, ASLA, SCM and our proposed algo-

rithm are compared with the available ground truth to generate

the mean square error. The average location error of each method

on each video is listed in Table 2 . Fig. 3 shows the screen shots

of the proposed tracker under several challenging conditions. The
elative position error per frame (in pixels) between the tracking

esult and ground truth is reported in Fig. 4 , whereas the visual

omparison on key frames is presented in Fig. 5 . 

It is evident from Table 2 that the proposed tracking method is

ore effective than other vector based methods. The advantage of

ur method is much notable with face based videos, for which our

racker achieved better performance. For other videos, our method

rovides the second best results with insignificant margins from

he best results. The reason behind is that, other videos have fewer

hallenging conditions and do not contain abrupt motions. How-

ver, when the impulse motion and orientation changes occur, ten-

or based image representation can provide a better performance.

CM achieved the second best result following the tensor based

racker due to its frequent model updating strategy. 

Overall performance: The overall performance of the related

rackers is evaluated using the precision plots and success plots.

he precision plot evaluates the robustness in terms of percent-

ge of video frames whose recorded location is within the pro-

ided threshold distance to the ground-truth. Whereas the suc-

ess plot is the measure of area under the curve (AUC) of each

racker. Success plot indicates the ratio among correctly tracked

rames whose overlap threshold is larger than the given threshold.

n terms of accuracy and overlap precision, the overall performance

f the tracker was also found to be better. Fig. 6 shows precision

lot ranking with the threshold of 20 pixels. The proposed tracker

chieves 6% better precision as compared to SCM, whereas in suc-

ess plot the proposed tracker achieves 5% better ranking over CSK

n terms of AUC. 

.1.2. Qualitative analysis 

The visual analysis of the proposed tracking method is also car-

ied out under several challenging conditions. 

Occlusion: Fig. 3 (a) shows the results of tracking key frames

ith occlusion. The subject face in this sequence is being severely

ccluded by a book. The target in frame 50 covered major part of

er face by the book, but accurate tracking is still achieved using
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Fig 4. Position errors (pixels) with respect to ground truth and comparison of different trackers on face based videos. 

Fig 5. Screen shots of tracking results obtained by existing trackers in comparison with the proposed tensor based tracker (TTracker). 

o  

c

 

g  

i  

F  

c  

n  

c

 

v  

s  
ur method as the tensorial information of the target is retained to

ompute the similarity, which makes it less susceptible to noise. 

In terms of locating tracked objects, our method also provides

ood accuracy. Fig. 4 shows the result on the faceOCC1 sequence,

n which the proposed method performed better than ASLA and

RAG due to effective updating. The error rates of CSK and IVT are
omparable to ours. FRAG performs poorly in the occlusion sce-

ario, due to the lack of mechanism to deal with the appearance

hanges. 

Illumination variation and scale changes: The tracking results for

ideos with severe illumination changes is depicted in the video

equence named Mhyang as shown in Fig. 3 (d). In frame 540 , the
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Fig 6. Comparison of different trackers in terms of the precision and success plots of the one pass evaluation (OPE) measure. 

Fig 7. Results obtained by the proposed tracker on key frames taken from sample 

videos of MMI and MUG facial expression database under head rotations and vary- 

ing expressions (upper row). Images on the lower row show cropped faces with 

rotation corrected face geometry. 
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each mode. In case the information content related to one mode of 
target moves backward from its position and resulting in scale

changes, whereas in frames 760 and 1200 , the illumination effect

is more significant, which makes the tracking process more chal-

lenging. Frame 1410 is chosen to indicate the target rotation. The

proposed method performs effectively under these conditions. 

The video sequence provided in Fig. 3 (b) shows a person walk-

ing out of the dark place into an area with spot lights, where the

motion of target and camera is also found. In this sequence, our

tracker and IVT successfully retained the tracking region through-

out the sequence, whereas FRAG lost the tracking process and

drifted away from its position. As evident form Fig. 5 (c) and (d),

our tracker best places the tracking window on the target and ac-

curately captures the face rotation along with the side pose, while
70

75

80
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100

Anger Disgust Fear H

Re
co

gn
iti

on
 R

at
e

Facial exp
Proposed Ttracker+SVM
Detection+LFDA (Rahulama et al, 2013

Fig 8. Performance comparison of the proposed TTracker based FER wit
he ASLA and IVT windows are scaled slightly larger than the tar-

et. 

The sample results shown in Fig. 3 (c) are taken from video se-

uence Dudek , which involves illumination, scale and pose varia-

ions. Frame 209 shows the tracking result under quick face occlu-

ion, whereas frames 500 and 997 show the expression variation.

he target is also under the motion with changing background and

cale. The proposed tracker quickly adapts the changes in scale and

oses as evidenced in the results. 

The effect of head pose changing on tracking result in the

omparison to others is more evident in Fig. 5 (b). In frame 250 ,

ll other trackers captured the face location but the head rota-

ion is more accurately located by TTracker. Moreover, the scale

hanges in subsequent frames of Fig. 5 (b) is modelled effectively

ith TTracker, where ASLA and CSK localized a larger region and

RAG tracker completely lost the target. This is due to the proposed

ncremental template updating mechanism, which empowers the

racker to cope with gradual appearance changes in our method,

hereas the classical approaches were not able to do this. 

The good performance of the proposed tracking framework can

e credited by the fact that the tensor framework delivers more

tructural motion information of the target as compared to vector

ased strategies. In terms of adaptability, the incremental tensor

ased learning through the N-mode SVD could learn more specific

ppearance changes of the target by capturing the variations with

he passage of time. Meanwhile, the tensor reservoir in our pro-

osed model serves the purpose of retaining the information in
appy Sad Surprise Average

ressions
AAM+SVM (Aifanti et al, 2014)

) Detection+SVM (Kumar et. al 2016)

h existing facial expression recognition methods on MUG dataset. 
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Fig 9. Screen shot of GUI for expression recognition using the proposed tracker for offline videos as well as online ones taken by a camera. 

Fig 10. Test results of a subject posing facial expressions in front of a live camera. The waveform indicates the expression confidence in terms of normalized score for each 

frame, while the test expressions belonging to corresponding key frames along with tracking results are displayed in the images above. 
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he tensor is affected, the remaining modes are still enough to re-

tore the subspaces contents. Hence, the minor imprecisions in the

emplate location do not accumulate further, and thus the proce-

ure assists the tracker to tolerate the template drift. We presented

he visual results related to face based images, so as to empha-

ize the tracking performance under the natural head movements

nd orientation changes. Our method is particularly useful for face

ased HCI, such as expression recognition. 
. Application to human facial expression recognition 

Conducting real-time face tracking to examine the facial ex-

ressions is precluded by problems such as head pose orientation,

cale variation and at the same time the paucity of fast processing

ramework. On the other hand, face tracking provides a promis-

ng tool to track the initial face position of subject for subsequent

rames with less computational complexity. Meanwhile, the scale
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Table 3 

Comparison between Gabor wavelet based features and LBP features in 

terms of average recognition rate for different types of kernels used in the 

SVM classifier. 

Feature Extraction Recognition Rate (%) 

SVM (linear) SVM (polynomial) SVM (RBF) 

Gabor 94.16 92.31 91.04 

LBP 90.87 89.54 92.24 

 

t  

f

4

 

c  

p  

t  

(  

&  

l  

t  

i  

c  

l  

o  

r  

t  

F  

I  

r  

o

 

a  

r  

o  

2  

f  

t  

t

 

p  

m  

c  

b  

t  

m  

r  

o  

s  

t  

m  

p  

t  

b  

T  

t  

f  

a

4

 

c  
and rotation information can also be effectively determined along

with face tracking, which can sufficiently avoid the need of face

registration. 

In this section, we present the real-time facial expression recog-

nition system based on the proposed tracker. We have considered

a seven-class recognition problem including the neutral expression,

and six prototype expressions, Happy, Sad, Fear, Disgust, Anger and

Surprise. We also present the performance evaluation on publi-

cally available facial expression datasets and also on self-collected

videos. 

4.1. Facial expression recognition 

Generally, a facial expression recognition system involves two

key phases: effective facial representation and accurate classifier

design. 

4.1.1. Feature extraction 

In our work, we used Gabor filters to extract the facial informa-

tion from the tracked face region. Gabor filters are widely accepted

in many face based HCI systems, owing to their robustness against

photometric disturbances and invariance to image registration is-

sues ( Amin & Yan, 2009; Haghighat, Zonouz, & Abdel-Mottaleb,

2015 ). The Gabor function in the spatial domain characterizes a

Gaussian-shaped envelop modulated by a complex sinusoidal sig-

nal: 

g ( x, y ) = 

1 

2 πδx δy 
exp 

{ 

−1 

2 

[
( x/ δx ) 

2 + ( y/ δy ) 
2 
]

+ i ( ux + v y ) (16)

A set of Gabor functions with multi-scales and orientations are

employed for extracting more compact and effective image repre-

sentation. We used 3 scales and 5 orientations of Gabor function

in our experiment to extract the frequency contents of the im-

age. Furthermore, 8-bit down-sampling is carried out to reduce the

neighbourhood pixel redundancy. 

4.1.2. Classification 

The final stage of the FER system is based on classifier design.

We used support vector machines (SVMs) for generalized perfor-

mance. SVM is a binary discriminant classifier which is based on

structural risk minimization principle that produces the maximum

margin hyperplane between two classes. As we considered 7-class

recognition problem, a multiclass SVM classifier can be constructed

by using the one-against-all strategy ( Weston & Watkins, 1998 ).

Here we briefly present the multiclass SVMs used in our exper-

iments. Given the training data of size N as; ( g 1 , l 1 ),…, ( g N , l k )

where, g j ∈ � 

R feature vector and l j ∈ {1, …, 7} represent the

corresponding expression labels. Multiclass SVMs defines only one

optimization problem but constructs seven class rules. So to fol-

low the k th function w 

T 
k 
φ( g j ) + b k to partition training vectors of

class k from remaining feature vectors, we minimize the following

objective function: 

min 

w,b,ξ

1 

2 

7 ∑ 

k =1 

w 

T 
k w k + 

N ∑ 

j=1 

∑ 

k � = l j 
ξ k 

j (17)

Subject to the constraints: 

w 

T 
l j 
φ
(
g j 

)
+ b l j ≥ w 

T 
k φ

(
g j 

)
+ b k + 2 − ξ k 

j 

ξ k 
j ≥ 0 , j = 1 , . . . , N, 

{
k = 1 , . . ., 7 | l j 

}
(18)

where, ϕ is the mapping function, C penalizes the training errors,

b = [ b 1 . . . b 7 ] 
T is the bias vector and ξ is a slack variable, and ξ =

[ ξ 1 
1 , . . . , ξ

k 
i 
, . . . , ξ 7 

N ] 
T , whereas the decision function can be given

by: 

h ( g ) = argmax 
k =1 , ... , 7 

(
w 

T 
k φ

(
g j 

)
+ b k 

)
(19)
After training the multiclass SVMs, a new feature vector from

est image is classified using the equation above to recognize the

acial expression. 

.2. Experiments on facial expression recognition 

In this work, we used the proposed tracker to track the face lo-

ation over several benchmark facial expression video datasets and

erformed the online facial expression recognition. We considered

hree widely used FER datasets, extended Cohn–Kanade dataset

CK + ) ( Lucey et al., 2010 ), MMI dataset ( Pantic, Valstar, Rademaker,

 Maat, 2005 ) and MUG dataset ( Aifanti, Papachristou, & Delopou-

os, 2010 ). In order to guarantee the generalization performance of

he system, one of the dataset was used to prepare the training

mages, and the other two datasets were used for testing. As CK +
ontains more subjects and videos, we used it for training. Chal-

enging subject videos that contain sufficient head rotations from

ther datasets were used for testing. Fig. 7 shows the tracking

esult obtained from the proposed tracker on images taken from

he MMI and MUG datasets with apex frames. The second row of

ig. 7 demonstrates the cropping result from the tracker window.

t is evident that despite the presence of scale variation and head

otations, the cropped images are well aligned in terms of face ge-

metry. 

Table 3 presents the result of SVMs in terms of recognition rate

gainst different kernels used. Apart from Gabor features, we also

ecorded the recognition rate for histogram based features based

n local binary patterns (LBP) ( Zavaschi, Britto, Oliveira, & Koerich,

013 ). LBP features can be computed more efficiently than Gabor

eatures, but are more sensitive to illumination variations and ro-

ations. Gabor features with linear SVMs have the highest recogni-

ion rate compared with other kernels and LBP. 

Tracking results from the proposed tracker were used to com-

are the performance of FER with the results obtained by other

ethods. We evaluated the results from several approaches, in-

luding face detector based method ( Rahulamathavan, Phan, Cham-

ers, & Parish, 2013 ), active appearance model based feature de-

ector, ( Aifanti & Delopoulos, 2014 ) and feature point based face

odel ( Kumar, Bhuyan, & Chakraborty, 2016 ). Fig. 8 compares the

esults of 6 expressions on the MUG database using the leave-

ne-out validation strategy. The reason for using only 6 expres-

ions here is that several methods above do not consider the neu-

ral expression. It can be seen that the results from the proposed

ethod were consistently higher for each expression. For the sur-

rise expression, our recognition rate is comparable with the fea-

ure detection method, whereas for the fear expression, the margin

etween our method and the feature detection method is higher.

he overall average recognition rate of our method is also better

han all other algorithms. This fact can be credited by the accurate

ace registration using our proposed method, which yields compar-

tively better feature representation for FER. 

.3. Online experiments 

A graphic user interface (GUI) is designed and utilized for

onducting online experiments with videos taken by a camera.



S. Khan et al. / Expert Systems With Applications 90 (2017) 427–438 437 

Table 4 

Confusion matrix of recognition rates obtained using linear SVM for seven facial 

expressions. 

Average recognition rate = 94.16% 

Angry Disgust Fear Happy Sad Surprise Neutral 

Angry 91.16 5.51 0 0 0 3.33 0 

Disgust 7.84 92.16 0 0 0 0 0 

Fear 0 0 89.67 0 0 6.64 3.69 

Happy 0 0 0 97.18 0 0 2.82 

Sad 0 0 0 0 95.83 0 5.17 

Surprise 0 0 2.66 0 0 97.34 0 

Neutral 0 0 0 0 4.21 0 95.79 
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ig. 9 shows a snapshot of the GUI. A subject is asked to perform

xpressions in front of the camera and real-time expression recog-

ition is performed. The figure shows the input frame with the

racking window and corresponding the aligned and cropped face

egion. The bottom graph indicates the confidence level of each ex-

ression for a test frame. A higher score indicates the presence

f particular expression. The tracking window is obtained on ev-

ry frame and is then processed further to obtain the affine trans-

ormed tracked image. Classification is done later and the expres-

ion label is generated. Fig. 10 shows the result of proposed tracker

n 250 frames of a recorded video. The subject starts from neutral

xpression and plays 7 expressions. The top image shows the key

rames of video with expression variation and the tracking win-

ow. It can be seen that the tracker follows the face region ac-

urately over all 250 frames, despite head rotations. The bottom

urves show the normalized score of each expression. It is inter-

sting to note that, the neutral class, which is a transition expres-

ion between two universal expressions and is played for a very

hort time, is also being effectively recognized by the system. The

ain reason behind these refined results is the perfect face track-

ng that reduces the problems of miss alignment and registration

f the face. 

Apart from benchmark videos from MMI and MUG datasets, we

lso tested the proposed tracker on self-collected videos in order

o quantify the recognition performance. Table 4 shows the con-

usion matrix for 7 expressions associated with these test data of

3 persons in total 30 videos. As can be seen from the table, the

verage recognition rate of 94.16% is achieved, where diagonal en-

ries indicate the recognition rate of each expression. The surprise

nd happy expressions can be recognized with the highest accu-

acy, while we noticed that sad and neutral expressions are some-

imes difficult to recognize, due to the fact that the sad expression

s highly subject dependent, which sometimes resembles the neu-

ral state. 

. Conclusion 

In this paper, we propose a tensor based method to construct

he target template appearance as a reservoir of 3rd order tensors

nd consider the object tracking problem in a generative frame-

ork as an online tensor learning task. An effective N-mode SVD

ased tensor eigenspace representation is learned online, and the

pdating procedure is carried out over the time span. The pro-

osed multi-mode model is demonstrated for object tracking to

etter deal with large appearance variations caused by shape de-

ormations, occlusions and drifts. Experiment comparisons with

xisting tracking strategies revealed the effectiveness of the pro-

osed method, especially when the target motion is under rota-

ional changes. Finally, the task of facial expression recognition is

nvestigated by integrating the proposed tracking strategy with an

xpression recognition module. A GUI is developed and used for

valuation of our method on public and self-prepared videos. Our
ystem can effectively recognize human facial expressions from

ideos and streaming camera with encouraging recognition rate of

4.16% for 7 classes of basic expressions. We believe that the pro-

osed method will facilitate future development of face based-HCI

pplications and find useful applications to other object tracking

nd recognition systems. 
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