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The development of tyrosine kinase inhibitors (TKIs) target-
ing the epidermal growth factor receptor (EGFR) provide an 
important insight on oncogenic therapy.[1–4] TKIs, gefitinib, 
and erlotinib inhibit reversibly by competitively binding at 

the ATP pocket of the EGFR tyrosine kinase domain. These 
drugs represent a promising therapeutic strategy in non-small 
cell lung cancer (NSCLC) patients. The key mutations of this 
functional kinase domain include: exon 21 mutations causing 
L858R substitution and exon 19 mutations causing in-frame 
deletions of amino acids 747–750. Remaining EGFR point 
mutations are seen in exon 18 and 20 regions, respectively. 
However, these first line TKIs developed resistance due to 
the secondary EGFR substitution mutation T790M (gate-
keeper mutation) and thereby downstream oncogenic signal-
ing pathway was not very effective.[5–8]
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Present work elucidates identification of next generation inhibitors for clinically rel-
evant mutations of epidermal growth factor receptor (EGFR) using structure-based 
bioactive pharmacophore modeling followed by virtual screening (VS) techniques. 
Three-dimensional (3D) pharmacophore models of EGFR and its different mutants 
were generated. This includes seven 3D pharmacophoric points with three different 
chemical features (descriptors), that is, one hydrogen bond donor, three hydrogen 
bond acceptors and three aromatic rings. Pharmacophore models were validated 
using decoy dataset, Receiver operating characteristic plot, and external dataset com-
pounds. The robust, bioactive 3D e-pharmacophore models were then used for VS of 
four different small compound databases: FDA approved, investigational, antican-
cer, and bioactive compounds collections of Selleck Chemicals. CUDC101 a multi-
targeted kinase inhibitor showed highest binding free energy and 3D pharmacophore 
fit value than the well known EGFR inhibitors, Gefitinib and Erlotinib. Further, we 
obtained ML167 as the second best hit on VS from bioactive database showing high 
binding energy and pharmacophore fit value with respect to EGFR receptor and its 
mutants. Optimistically, presented drug discovery based on the computational study 
serves as a foundation in identifying and designing of more potent EGFR next-
generation kinase inhibitors and warrants further experimental studies to fight against 
lung cancer.
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The main motivation of the present work involves de-
veloping a computational model to provide key insight on 
the EGFR resistance arising from its FDA approved drugs, 
and its clinical outcome of the patients tested at the Amrita 
Institute of Medical Sciences (AIMS), Kochi, routinely. We 
collected EGFR-mutation test performed on 54 patients at 
AIMS, Kochi. Among these, majorities of patients showed 
substitution mutation L858R at Exon 21 and deletion muta-
tion at Exon 19 (delE746-750). Lichun et al. created EGFR 
mutant structural database by collecting information of 942 
NSCLC patients toward 112 mutation types which includes: 
insertion, deletion, duplication, modification, and substitu-
tion. Clinical data showed that the large number of patients 
have L858R mutation followed by Exon 19 and Exon 21 mu-
tations, respectively.[9]

Three dimensional (3D) structural information of a pro-
tein is very useful to understand the mode and mechanism 
of inhibitor binding at its functionally important active site 
residues. Structure-based pharmacophore modelling, molec-
ular docking, and molecular dynamics simulation techniques 
are well established in computer-aided drug design. Different 
types of weak interactions between protein–drug complexes 
at the atomic level lead to the complex stability and molec-
ular mechanisms of drug action and its resistance toward 
particular disease.[10,11] The degree of drug resistance can be 
quantitatively addressed by measuring the binding free en-
ergy (or affinity) between the drug and its mutant proteins. 
3D structural details are available for the wild type and few 
EGFR mutants from the Protein Data Bank (PDB) using X-
ray crystallography and nuclear magnetic resonance (NMR) 
techniques.[12] These 3D structures provide valuable insight 
on the kinase-inhibitor interaction mechanism and its resis-
tance arising due to mutations. Further, the free energy index 

depends mainly on the EGFR mutant 3D structure and the 
bioactive conformational mode of interactions with its TKIs. 
Zhou et al. computationally predicted EGFR mutation in-
duced drug resistance based on the TKIs binding free energy 
calculations toward its active sites.[1]

In this study, we employed an in silico modeling approach 
to develop effective EGFR 3D structure-based bioactive 
pharmacophore model for identifying inhibitors against the 
clinically significant EGFR mutations. Energy-based phar-
macophore modeling methodology was computed using 
structure-based drug-protein complexes by mapping the en-
ergetic terms from the Glide extra precision (XP) docking 
score function onto atom centers of the EGFR active site 
residues in complex with its drugs (erlotinib or gefitinib). 
Pharmacophore 3D sites were predicted by providing the 
results from Glide XP docking energy descriptors.[13,14] The 
pharmacophoric sites were ranked based on the interaction 
energies of the TKIs ligand atoms with the EGFR target pro-
tein. Phase module of Schrödinger (Phase, v.4.1) software 
suite was used for the automatic generation of pharmaco-
phoric sites using the EGFR-drug interactions descriptors 
to develop its 3D structure-based bioactive pharmacophore 
model. Phase module consists of six different types of phar-
macophoric chemical features to describe the protein-ligand 
contacts. This includes hydrogen bond acceptor (A), hydro-
gen bond donor (D), hydrophobic (H), aromatic ring (R), pos-
itive ionization (P), and negative ionization (N), respectively.

We developed structure-based 3D pharmacophore mod-
els using crystal structures of EGFR in complex with its in-
hibitors gefitinib and erlotinib. Point mutation (L858R and 
T790M) in complex with Gefitinib (PDB id: 4I22, resolu-
tion 1.71 Å) and wild type in complex with Erlotinib (PDB 
id: 1M17, resolution 2.6 Å)[15,16] crystal structure shown in 

F I G U R E   1   The crystal structure 
of EGFR (PDB ID: 4I22) with mutations 
L858R, T790M bound to Gefitinib (pink 
color) and the superimposed crystal 
structure of Erlotinib (yellow color) 
bound to EGFR (PDB ID: 1M17) (right). 
The mutated residues are shown in stick 
format. EGFR crystal structure with L858R 
mutation is shown in stick format (green 
color) and deletion region of residues 746–
750 shown in green color (a). 3D structure-
based Pharmacophore model of EFGR wild 
type (b) and EGFR point mutant (c) [Colour 
figure can be viewed at wileyonlinelibrary.
com]

(a) (b)

(c)
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Figure 1a were used to build the pharmacophore models. 
These two 3D models showed seven pharmacophoric features 
AAADRRR, with three different chemical features—three 
hydrogen bond acceptors (A), three aromatic rings (R), and 
one hydrogen bond donor (D), respectively. These pharma-
cophoric features are located in 3D space measured in terms 
of chemical feature distances and angles. They represent the 
chemical groups responsible for its EGFR inhibitory activ-
ity. Interestingly, these 3D measurements varied in our two 
different pharmacophore models as mentioned above, show-
ing the specificity toward designing EGFR wild type and its 
resistant mutants inhibitor, and is presented in Figure 1b,c. 
This 3D pharmacophoric features in turn guide us in design-
ing new EGFR-specific inhibitors.

The 3D pharmacophore model robustness was validated 
using decoy dataset, receiver operating characteristic (ROC) 
plot, and enrichment factor (EF). Results showed promis-
ing true positive result with high goodness of fit value. This 
model was then used for an effective virtual screening (VS) of 
the four different focused small compound databases to iden-
tify putative EGFR inhibitors (or repurposed compounds), 
and thereby addressing its drug resistance.[17]

The main objectives of the present work include: (i) 
Development of 3D structure-based pharmacophore models 
with specific chemical features using favorable interaction 
energy descriptors from gefitinib and erlotinib (ii) Sequential 
VS using both wild type and mutant forms of the EGFR spe-
cific 3D e-pharmacophore models for identifying common 
hits with similar pharmacophoric chemical features, to ad-
dress its drug resistance. Hits obtained from the VS technique 
should be capable of making key molecular interactions at 
the active site of the EGFR wild type and mutant receptors.

Pharmacophoric fitness value is one of the key parameters 
used to rank and identify the potent EGFR inhibitors. The 
fitness value determines how well an inhibitor fits or satisfies 
the 3D spatial requirements of the model. We employed se-
quential VS techniques using four different small compound 
databases by employing various computational techniques. 
These include (i) 3D e-Pharamcophore model-based VS 
using PHASE module, (ii) Simple precision (SP) followed 
by an XP-based molecular docking to filter compounds on 
the basis of docking score or binding affinity (BA in unit of 
kcal/mol) using Glide module to identify novel and putative 
EGFR specific lead compounds, and (iii) ADMET-based VS 
using the Qikprop module.

The efficiency of 3D structure-based pharmacophore 
model for VS depends mainly on the specificity and accuracy 
of its model query. It is well-known that the VS procedure 
does have limitations of false positive (or false negative) re-
sults. This could be assessed by employing the decoy dataset 
test and other statistical parameters, namely sensitivity, good-
ness of hit and enrichment factor. We constructed a decoy li-
brary containing 1,012 compounds with 1,000 decoys and 12 

known EGFR inhibitors as actives.[18] The decoys have 
almost similar molecular weight, LogP, hydrogen bond do-
nors/acceptors, but with differences in the chemical and topo-
logical differences so that they may not bind to the EGFR 
active sites. The efficiency of the 3D Pharmacophore model 
was computed using the statistical formula

where EF = enrichment factor, GH = goodness of hit, 
N = total number of compounds in the data set, A = total 
number of actives in the dataset, Ht = total hits and Ha = ac-
tive hits. Further, to standardize the VS protocol, the ob-
tained results were evaluated by EF with 1% and Boltzmann 
enhanced discrimination of the ROC curve, and is presented 
in Figure 2a,b.

VS of these decoy dataset compounds were performed 
using the PHASE generated pharmacophore models for dif-
ferent EGFR crystal structures in complex with drugs. The 
computed statistical values obtained for two different phar-
macophores were significant showing its high VS efficiency, 
and is presented in Table S1. These models were further 
confidently used for VS of four different small compound 
databases.

In computer-aided drug designing, VS is an important 
technique to retrieve and discover new lead like compounds 
for any druggable target.[17] Pharmacological structural space 
was defined as the protein (receptor) key binding sites where 
its potential ligands make the bioactive conformation for its 
mechanism of action. VS involve the search for a compound 
in 3D chemical space and which are complementary to the 
pharmacological space for the protein of interest involved in 
the diseased conditions. We adopted sequential VS strategies 
using three different focused small molecule databases to re-
duce the search space for potential drug candidates by filter-
ing out compounds unlikely to interact with the EGFR and its 
mutant structures. Three different small compound databases 
containing 1,826 FDA approved drugs, 545 investigational 
drugs, and 386 anticancer drugs were used for sequential 
VS.a,b Most of these compounds are FDA approved or under 
clinical trials and can be considered as repurposed drugs in our 
VS strategy. Different steps adopted for sequential VS strategy 
are explained below, and its flowchart is depicted in Figure 2c.

In the first step, EGFR and its mutants specific 3D pharma-
cophore models having seven chemical features were used as a 
query for VS. On the basis of pharmacophore feature site match-
ing and its fit values, 2,757 compounds from three different 
focused databases were prioritized, as mentioned earlier. Two 
different pharmacophores were generated which include- (i) 
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First pharmacophore model obtained from the EGFR wild type 
retrieved 15 best fit compounds, (ii) and second pharmacoph-
ore model obtained from the EGFR point mutation retrieved 
10 best fit compounds. This stage of the 3D e-pharmacophore 
model-based VS process was very effective on the basis of the 
best 3D pharmacophoric chemical feature matching and fitness 
value (Table S2) in retrieving 25 compounds from these data-
bases. The VS results are presented in Figure 2c.

A molecular docking technique using Glide module was 
used as the second step of sequential VS. It scores possible 
kinase-ligand interactions according to their best pose and 
computed BAs (kcal/mol) for VS,[19] and is illustrated in 
Figure 2c. We have chosen Glide score (or BA) ≥9 for XP 
filtering and which further takes care of filtering false pos-
itive compounds from the small compound databases. 25 
compounds from our first stage of VS were then further pri-
oritized. 17 compounds were selected on the basis of the best 

glide score (or BA) and its mode of atomic level interactions 
with the EGFR and its mutants structure (Table S2).

The last stage of our sequential VS is the ADMET 
properties-based filtering using QikProp module.[20] Initially, 
Lipinski’s rule of 5 was applied and the drugs which do 
not follow this rule were rejected. Further, QPlogPo/w, 
QPlogHERG, and human oral absorption values were calcu-
lated. The best four compounds from two different pharma-
cophores were selected, which include CUDC101, Afatinib, 
Erlotinib, and Gefitinib (Figure 2c). It is interesting to know 
that our pharmacophore models were able to retrieve the cor-
rect set of compounds (including FDA approved drugs) from 
different small molecule databases showing its robustness 
and importance to address the drug resistance. The ADMET 
properties of some of these most common hits are shown 
in Table S3. The best compound CUDC101 retrieved from 
the databases were tested for two different pharmacophores 

F I G U R E   2   The percentage recovery rate of known actives from the constructed decoy and ranked database (a) ROC curve (b) obtained 
from three EGFR specific pharmacophore models. The curves shown in green color belong to wild-type EGFR and red color belongs to point 
mutant EGFR. A flowchart showing in silico sequential virtual screening strategy of the present studies using 3D pharmacophore model, molecular 
docking, and ADMET techniques (c) [Colour figure can be viewed at wileyonlinelibrary.com]

Small molecule databases FDA approved, 
investigational, anticancer compounds 

(2,757 compounds)

 EGFR wild type (1M17) 
(15 compounds) 

 EGFR point mutation (4I22) 
(10 compounds) 

(EGFR wild type) 
(10 compounds)

(EGFR point mutation) 
(7com pounds)

Seven chemical features Pharmacophore 
model-based screening  

ADMET & common hit-based screening 

CUDC101, erlotinib, gefitinib, afatinib 

Glide score based screening (SP & XP) ≥ 9 kcal/mol 

(a)

(c)

(b)
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map fitting. The corresponding fitness value was 1.756 (wild 
type) and 2.124 (point mutation-Figure 3a) respectively.

To retrieve new scaffold-based compounds from these 
3D e-pharmacophore models using other small compound 
databases, we completely failed in the VS process to filter 
(identify) common VS hits. This was based on the best 3D 
pharmacophoric fit values and BAs, respectively. So, we 
relaxed to six chemical features in our seven featured 3D 
pharmacophore model-based VS that is two hydrogen bond 
acceptors (A), three aromatic rings (R), and one hydrogen 
bond donor (D), respectively. This new EGFR and its mutants 
specific 3D e-pharmacophore model having six chemical fea-
tures was used as a query for VS on the basis of pharmacoph-
ore feature site matching and its best fit values. This modified 
chemical hypothesis allowed us to retrieve new scaffold-
based compounds in the chemical space.

Two different pharmacophore models were generated 
using the above mentioned six chemical features (AADRRR) 
for VS from SelleckChem database containing 2,084 bioac-
tive compounds. The VS hits of (i) first pharmacophore ob-
tained from EGFR wild type (1M17) retrieved 286 best fit 
compounds, and (ii) second pharmacophore obtained from 
EGFR point mutation (4I22) retrieved 132 best fit com-
pounds. This stage of the VS was very effective to retrieve 
418 total compounds from 2,084 bioactive compounds show-
ing 3D pharmacophore fit value ≥1.

Our next stage of VS uses molecular docking technique 
using Glide module. The interaction energy of VS com-
pounds with the EGFR active sites was measured and BA of 
each compound was computed. This VS stage retrieved 17 
compounds from the XP docking methodology on the basis 
of its BA values. Among these, the best overlapping VS hit 
was ML167 compound. This compound showed good phar-
macophoric fitness value of 1.784 and BA of −9.33 kcal/
mol for EGFR wild type, and pharmacophoric fitness value 
of 2.151 and BA of −11.12 kcal/mol for EGFR point muta-
tion, and is presented in Table 1, Figures 3b and S1. These 
results are comparable with the well-known FDA approved 
drugs gefitinib and erlotinib obtained from the present 3D 
e-pharmacophore and docking studies. Table 1 shows the key 
interacting (hydrogen bonding and hydrophobic) residues of 
EGFR wild type and its mutants for the best two compounds 
CUDC101 and ML167 in comparison to that of FDA ap-
proved drugs gefitinib and erlotinib, along with its binding 
affinity and pharmacophore fit value. Thus, the probability 
of repurposed compound ML167 to succeed as a potential 
EGFR and its mutant inhibitor was promising. However, ex-
perimental in vitro and in vivo validation is urgently required 
to succeed in this drug discovery endeavor.

Our seven chemical featured pharmacophore model-based 
VS retrieved CUDC101 compound as the promising common 
hit. This compound showed multitargeted inhibition toward 

F I G U R E   3   3D structure-based 
pharmacophore model map fitting of 
CUDC101 compound (a) and ML167 (b) in 
complex with EGFR point mutant obtained 
using Phase and Glide module. The crystal 
structure of EGFR with point mutations 
(T790M and L858R) and deletion region 
(Del E746-A750) are shown in lime green 
color along with bound inhibitor Erlotinib 
(yellow), Gefitinib (blue), CUDC-101 
(pink), ML167 (green) (c). Interaction of 
CUDC-101 and ML167 inhibitor with the 
active site residues in (d, e) EGFR point 
mutation. Water molecules are shown as 
orange spheres [Colour figure can be viewed 
at wileyonlinelibrary.com]

(a) (b)

(c) (d)

(e)
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EGFR, histone deacetylase and HER2.[21] So, our pharmaco-
phore model will be highly significant with meaningful 3D 
chemical features and can be confidently used as a control 
for further VS of new compound databases. Other promis-
ing common hits obtained by sequential VS include afatanib, 
erlotinib, and gefitinib FDA approved drugs shown in Table 
S2. Further, CUDC101 displayed potent antiproliferative and 
pro-apoptotic activities against cultured and implanted tumor 
cells that are sensitive or resistant to several single-targeted 
drugs.[22] The second most common promising hit retrieved 
from the Bioactive database (SelleckChem) was ML167 
using six chemical feature pharmacophore model. This com-
pound was already known to be a potent CLK4 inhibitor.[23]

The next step includes the molecular recognition analysis 
of CUDC101 and ML167 clinical compounds with the active 
site of EGFR protein and its mutants. Both these repurposed 
compounds showed promising hydrogen bonding, hydropho-
bic, and other weak interactions (van der Waals, π–π, and π–σ) 
with the EGFR wild type and its mutant protein. Molecular 
superimposition of these compounds (gefitinib, erlotinib, 
CUDC101, and ML167) showed similar mode of binding 
toward the active sites of EFGR mutant crystal structure, pre-
sented in Figure 3c. Interacting residues of CUDC101 with 
wild-type EGFR protein and its point mutants are presented in 
Table 1, Figures 3d, and S2. Water molecules showed prom-
ising hydrogen bonding interaction with CUDC101, which 
further stabilized its interaction with EGFR and its mutants. 
Gefitinib also showed interaction with residues MET793, 
LEU718, LEU788, LEU844, PRO794, ALA743, GLN791, 
and LYS745. CUDC101 binds with more affinity than the 
native FDA approved drugs viz. Gefitinib and Erlotinib, as 
shown in Table 1. Propyl morpholino ring of Gefitinib and 
2-methoxyethoxy group of Erlotinib lie outside the EFGR 
kinase active site cavity without making any atomic interac-
tions. While the hydroxamic end of CUDC101 completely 
fits within the active site of EGFR (Figure 3). Another key 
insight from the present computational study was, gefitinib 
drug has a better binding affinity (−11.463 kcal/mol) and 
pharmacophoric fit value (2.45) with the active site cleft of 
EGFR mutant (L858R and T790M) structure, in comparison 
with that of the EGFR wild type (−9.434 kcal/mol and 1.21) 
shown in Table 1. Further, the crystal structure of EGFR 
mutant (L858R and T790M) shows that due to mutation, the 
A-loop gets disordered, and the active site region increased 
by changes in the conformation in the side chain of Phe723 
residue. This in turn leads to less ATP binding affinity at the 
kinase active site with respect to that of the gefitinib binding. 
Our docking studies also clearly predicted increased gefitinib 
binding in this mutant case (Table 1), and which is in excel-
lent agreement with that of the in vivo results reported by 
Yoshikawa et al.[24]

It is now well established that the quinazoline moiety-
based small compounds such as erlotinib, gefitinib, lapatinib 

etc. have precedence as intracellular kinase inhibitors.[23] 
Some of these FDA approved drugs are currently used for 
NSCLC and pancreatic cancers. The molecular mechanism 
of action of these drugs is well known. Further, our best VS 
compound ML167 has quinazoline moiety acting as CLK 
family inhibitors.[23] Thus, the present work provided signifi-
cant insight on the 3D binding modality and the mechanistic 
action of ML167 toward EGFR and its mutants for predict-
ing its drug resistance. Further, the study provided necessary 
structural features important for wild type and mutant EGFR 
inhibition (Table 1 and Figure 3). The deletion mutant (Exon 
19 → delE746-750) of the EGFR crystal structure was not 
yet solved experimentally (X-ray or NMR), which hindered 
us to develop the 3D e-pharmacophore model specific to this 
deletion mutation. However, we presume that the present de-
veloped pharmacophore model has the ability to deal with the 
EGFR resistance mutations effectively.

Some of the significant insight obtained from the present 
study includes: (i) BA and pharmacophoric fit values can be 
considered as an important quantitative parameter for iden-
tifying new compound of interest by VS technique with in-
creased understanding toward its resistance mechanism; (ii) 
CUDC101 and ML167 can be taken forward for experimen-
tal testing to address the EGFR inhibition and other mutants 
causing resistance; (iii) Gefitinib BA is increased due to 
the point mutation L858R in comparison to that of its wild-
type EGFR (Table 1). This is in accordance with the in vivo 
(NIH3T3 cell line) experiments[24]; (iv) Our point mutant 
EGFR (L858R and T790M) pharmacophore model showed 
better BA for final VS hits in comparison to that of its wild-
type EGFR (Table 1). These results revealed that our point 
mutant model can address the drug resistance by having a 
better BA of CUDC101 and ML167 inhibitors (Table 1), than 
that of its natural ligand ATP. Experimentally, it is proven 
that the T790M mutation in the EGFR kinase causes drug 
resistance by increasing the BA toward ATP[25,26] (iv) Present 
3D e-pharmacophore models can be used for VS of new 
scaffolds containing compounds from different databases 
for EGFR wild type and its mutant targeted drug discovery 
program.

In summary, we report an in silico modeling approach 
to identify new lead compounds for designing EGFR spe-
cific inhibitors and its resistance. PHASE generated 3D e-
pharmacophore models were developed using the wild-type 
EGFR and its mutants. These models are validated using the 
decoy dataset, EF and GH calculations, and were found to 
be statistically significant. Sequential VS of small compound 
databases from these pharmacophore models filtered best hit 
CUDC101 with high BA and pharmacophore fitness value. 
These modeled parameters are better than that of the FDA 
approved drugs, Gefitinib and Erlotinib toward EGFR and 
its mutants. Compound ML167, which was known to be a 
potent CLK4 inhibitor was also discovered from the present 
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computational approach to be a putatively effective EGFR 
inhibitor. The developed 3D pharmacophore models and 
structural information presented in this study is expected to 
provide tools to design next-generation EGFR kinase inhibi-
tors, optimize currently available structures for more potency 
and specificity, and repurposing-based study using known 
drugs. Thus, the present study provides a key guidance to 
overcome the drug resistance mechanisms to qualify them for 
preclinical and clinical development from the known FDA 
approved drugs.
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