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Introduction 

 

Lung cancer has the largest mortality rate among all cancer types and results in 1.6 million deaths in 

the world each year.1 In Hong Kong, lung, liver and colorectal cancers are the three leading causes 

of cancer deaths, and lung cancer related deaths are more than those from liver and colorectal cancers 

combined (http://www3.ha.org.hk/cancereg/facts.html). About 85% of lung cancer patients have 

non-small cell lung cancer (NSCLC). Many of the NSCLC cases are caused by a mutation of the 

epidermal growth factor receptor (EGFR), especially in Asia.2,3 Several drugs are available in the 

market and they can be effective initially to make the tumour shrink and help the patients recover. 

However, after several months to one year, almost every patient develops drug resistance due to one 

or more additional mutations of EGFR, and the patient’s condition becomes worse quickly.2-8   

 

In this project, we study EGFR mutations at the molecular and atomic levels (Publications 1 to 12). 

We have collected EGFR mutations from research publication and from clinical cases at Queen Mary 

Hospital. Some of the mutations observed locally are rare and have never been reported in the 

literature. Based on computational models, we analyse how the 3D structure of EGFR will change 

due to a mutation. Then for each drug, we compute its binding strength with EGFR before and after 

the secondary mutation. The reduction in the binding strength reflects the degradation of the drug 

effectiveness. We have built and published a 3D structural database of EGFR mutants. We have 

analysed the characteristics of all known EGFR mutations at the atomic level. Our work can provide 

a useful reference to medical doctors for assessment of drug resistance level and planning 

personalised treatment.  

 

We have investigated one of the most important root reasons of NSCLC drug resistance: EGFR 

mutation. We have conducted computational modelling of EGFR mutants and analysis of EGFR-

drug interaction patterns. In our work, 

 Any observed EGFR mutation can be modelled mathematically and its 3D structure can be 

predicted computationally. The fundamental reason of drug resistance can be found at the atomic 

level. 

 Different drugs can be analysed. Based on our computer model, the binding strength between an 

EGFR mutant and a drug can be calculated. 

 Drug resistance level can be evaluated for each mutation and each drug. Thus, a comprehensive 

database of EGFR mutation and drug effectiveness is established, which provides a useful 

reference to medical doctors. 

 Our computational framework is much less expensive than wet-lab experiments. It can also be 

combined with biological experiments and clinical trials to improve our database.  

  

Methods 

 

Prediction of 3D structures of EGFR mutants: Experimentally, the 3D structure (the location of each 

atom) of a protein is usually obtained using X-ray crystallography or nuclear magnetic resonance 

(NMR) (Publication 2). There are over 100 EGFR mutations, and it would be too expensive to use 

these techniques to determine the 3D structures of all mutants and all EGFR mutant and drug 

complexes. In PubMed, there are over 4000 articles related to EGFR.1-8 However, in the public 

protein databank (PDB), only about 30 EGFR and drug related complexes are available. Some of 

these complexes provide information of different domains of EGFR, so only several EGFR mutant-

drug patterns can be used directly. To solve this problem, we predict the 3D structure of each EGFR 

mutant computationally (Publications 1 and 2). The General AMBER Force Field (GAFF) 

(http://ambermd.org/ antechamber/gaff.html), which covers most of the organic chemical space, is 

implemented to generate the topology and coordinate files of inhibitors (such as gefitinib and 

erlotinib). Based on GAFF, the antechamber program in AMBER24 assigns atomic charges and 

atom/bond types for the inhibitors, and further constructs their topology files. We translate these 

mutations from protein sequences into their 3D structures. A mutated protein structure is determined 

http://www3.ha.org.hk/cancereg/facts.html
http://ambermd.org/%20antechamber/gaff.html
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based on homology modelling. Different types of mutations are then obtained using two programs, 

scap and loopy (Publication 1). An inhibitor is separately aligned to the binding pocket of each mutant 

structure, to construct their bound complexes. 

 

Molecular dynamics (MD) simulations: An EGFR mutant-drug complex is computationally solvated 

into a water box. The dynamics of the complex is simulated in this solvent environment (Publications 

1 and 2). Prior to the crucial MD simulation, the entire system should be equilibrated to a stable state. 

We employ sander in AMBER for a series of equilibrating operations, which incorporates a short 

1000-step minimization (the first half with the steepest descent steps) to remove bad contacts, a 50-

picosecond (ps) heating (0 , 300 K) and a 50 ps density equilibration with weak restraints (weight of 

2.0) from a harmonic potential on the mutant-inhibitor complex, and a 500 ps constant pressure 

equilibration at 300 K. All simulations are performed with SHAKE constraints on hydrogen atoms 

to remove their bond stretching freedom, and the Langevin dynamics is adopted for an efficient 

temperature control. The equilibration of each system is verified through observing the temperature, 

density, energy and backbone root-mean-square deviation (RMSD) of each system. Once each 

system equilibration is achieved, we generate the production MD simulation for 2 ns, where we 

collect trajectory frames at a step of 10 ps and 200 frames in each trajectory. A stable backbone 

RMSD in each system is an apparent indicator of the stabilization of the production MD simulation, 

which guarantees a posterior reliable calculation of the binding free energy. For each system, the 

backbone RMSD distribution over the simulation period (2 ns) is investigated. 

 

Computation of binding free energy: The production MD simulations produce the motion trajectories 

of the solvated mutant-inhibitor systems, and the binding free energies are calculated based on these 

trajectories (Publications 1, 2 and 7). Binding free energy is a quantitative estimate of the binding 

affinity of a solvated receptor-ligand system. Based on the computations of different types of free 

energy differences, MMPBSA in AMBER derives the binding free energies, which encompass 

energy components of Van der Waals forces (VDW), electrostatic interactions (EEL), and the polar 

(EPB) and non-polar (ENPOLAR) terms of the solvation free energies. For the wild-type protein and 

observed mutants, we calculate their binding free energies with each inhibitor. 

 

Computational prediction of drug resistance: The potency of an inhibitor in the treatment of a specific 

patient can be measured by its survival time or response level. In clinical observations, survival time 

is generally recorded in the unit of months or days, corresponding to a continuous variable in 

computation. We use machine learning methods to build a classifier for the prediction of drug 

resistance levels (Publication 1) Response level, as output of the classifier can be divided into four 

categories and thus mapped into a discrete variable ranging in [1, 4]. The computed binding free 

energy is used as an important feature to the classifier. In addition, personal information of each 

patient is recorded as well, including age, gender, smoking history, performance status, subtypes of 

the NSCLC, stages describing the development of the NSCLC, brain metastasis, and suspension of 

drugs. Once trained, the classifier can be used to process new input data. 

 

Analysis of EGFR mutant surface characteristics: We used solid angles to characterize the geometric 

properties of the EGFR surface atoms, which were extracted using the alpha shape model 

(Publications 3, 5, 6, 8, 9, and 11). The solid angles of surface atoms can represent the surface 

curvature, which is used as a geometric property in our analysis. Concave shapes around the binding 

sites are more likely to offer opportunities for drug binding than convex shapes. If the drug binds to 

EGFR mutants very tightly, then it will strengthen the response. So we studied the EGFR mutation-

induced drug resistance by analysing the solid angles around the binding sites. 

 

Study of irreversible inhibitors: Besides reversible tyrosine kinase inhibitors (TKIs), new-generation 

irreversible inhibitors, such as afatinib, embark on playing an important role in NSCLC treatment. 

To achieve an optimal application of these inhibitors, the correlation between the EGFR mutation 

status and the potency of such an inhibitor should be decoded. In this study, the correlation was 
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profiled for afatinib, based on a cohort of patients with the EGFR-mutated NSCLC. Relying on 

extracted DNAs from the paraffin-embedded tumour samples, EGFR mutations were detected by 

direct sequencing (Publication 10). Progression-free survival (PFS) and the response level were 

recorded as study endpoints. These PFS and response values were analysed and correlated to different 

mutation types, implying a higher potency of afatinib to classic activation mutations (L858R and 

deletion 19) and a lower one to T790M-related mutations. To further bridge the mutation status with 

afatinib-related response or PFS, we conducted a computational study to estimate the binding affinity 

in a mutant-afatinib system, based on molecular structural modelling and dynamics simulations. 

 

Characterisation of EGFR and ErbB-3 heterodimerization: We have separately investigated the 

EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways 

(Publication 4). On one hand, we combined the molecular interaction in EGFR heterodimerization 

with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we 

characterized their corresponding EGFR mutations using molecular interactions, with three potential 

dimerization partners (ErbB-2, IGF-1R and c-Met) of EGFR and two of its small molecule inhibitors 

(gefitinib and erlotinib). Based on molecular dynamics simulations and structural analysis, we 

modelled these mutant-partner or mutant-inhibitor interactions using binding free energy and its 

components. 

 

Results 

 

Our research outcomes are summarized on the website http://bcc.ee.cityu.edu.hk/SFBG/. Some key 

results are presented below. 

 

Computational Platform and EGFR Mutant Structural Database: On the website, under 

“Computational Platform”, we list all known EGFR mutations that cause NSCLC and drug 

resistance, which are collected from literature and local hospitals. When the user clicks on a mutation 

name, the computer will show an interactive display of the corresponding EGFR mutant. The user 

can rotate and zoom in or out the mutant. The computer can also automatically show the mutant 

viewed at different angles if the user clicks on “spin on”. The wild-type EGFR will be superimposed 

on the mutant if the user clicks on “reference on”. Under “Computational Platform”, the user can 

report any newly observed EGFR mutation to us for analysis by clicking on “Report New EGFR 

Mutations”. We also provide a summary of all these mutants in “EGFR Mutant Structural Database: 

Computationally predicted 3D structures and the corresponding binding free energies with gefitinib 

and erlotinib” under “Research and Publications”, which is illustrated in Figure 1, on our website 

http://bcc.ee.cityu.edu.hk/SFBG/research_and_publications.html (Publication 2). 

 

Personalized prediction of NSCLC drug resistance: We combine EGFR mutant-drug binding free 

energy with specific personal features for 168 clinical subjects to construct a personalized drug 

resistance prediction model (Publication 1). The binding free energy is evaluated based on EGFR 3D 

structure prediction and MD simulation methods discussed above. Personal features used are shown 

in Figure 2. The utilization of extreme learning machines (ELMs) and leave-one-out cross-validation 

provides a successful identification of resistant subjects with high performance. The classification 

rates for different configurations of ELMs are shown in Figure 2. We have achieved about 90% 

accuracy for testing samples. 

 

EGFR mutant surface characteristics: We used 3D alpha shape modelling and a solid-angle analysis 

to reveal the local surface geometric properties of EGFR mutants (Publication 3). Our analysis results 

show that the number of atoms with the changes of convex shapes converting to concave, degree 

variation and disappearance has strong correlations with the drug progression time. Moreover, the 

number of binding-site atoms with solid angles in [0.71, 1], [0.61, 1] or [0.5, 1] also shows a strong 

correlation with the drug progression time. These characteristics can be applied to the prediction of 

EGFR mutation-induced drug resistance in lung cancer treatment. Our study indicates that, surface 

http://bcc.ee.cityu.edu.hk/SFBG/
http://bcc.ee.cityu.edu.hk/SFBG/research_and_publications.html
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geometric properties of the binding site on a key protein such as EGFR play an important role in drug 

resistance prediction. Figure 3 show the 3D alpha shapes of the wild type EGRF and its mutation 

with L858R. The mutation changes the convexity or concavity of the local surface regions. Figure 4 

illustrates the four types of surface structure changes due to protein mutation. These changes reduce 

the protein-drug binding strength and reduce the drug effectiveness. Our analysis provides an insight 

to the physical reasons why drug resistance occurs because of EGFR mutations. 

 

 
…… 

 
 

Figure 1: The “EGFR Mutant Structural Database” we have developed is available on-line. 

 

 
Figure 2: Personalized prediction of NSCLC drug resistance. Left: Personal features in addition to EGFR mutant-inhibitor 

binding energy used for classification. Right: Training and testing rates with different numbers of hidden nodes used in 

neural network based classifiers (ELMs). 

 

   
Figure 3: Surface propeerties of EGFR. (A) and (B) show 3D alpha shapes of the wild type EGFR and the mutant with 

L858R respectively. (C) and (D) display the surface structures at the drug binding site of the wild type EGFR and the 

mutant respecively. (E) and (F) are the zoomed version of (C) and (D) respectively to illustrate the curvature changes at 

the binding site. 

 

Selectivity profile of afatinib: A group of patients with EGFR-mutated NSCLC were studied. Their 

detailed EGFR mutation types were biologically screened prior to their treatment with oral afatinib, 

and the cancer progression of each patient was carefully followed up (Publication 10). Specifically, 

PFS and response level were two major indicators of drug effectiveness. Supported by the collected 

patient data, we detected that the classic activating mutations (L858R and exon 19 deletion) normally 

resulted in better afatinib-related responses or PFS values, while those involving the T790M mutation 

mostly perform worse during treatment. Figure 5 shows both experimental and computational results 
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of potency ranking for afatinib. The GB energy model agrees with the experiments for wild type 

EGFR and its two mutants (Figure 5, left and middle diagrams). We have also modelled other mutants 

computational, for which experiment data are not available. Figure 5 (right) shows the ranking profile 

obtained using the GB energy model.  
 

 

  
Figure 4: Illustration of different types of local surface curvature changes based on alpha shape analysis. (A) The original 

surface structure. (B) Convexity/concavity change. (C) Convexity/concavity degree change. (D) Addition of another atom. 

(E) Disappearance of an atom. 

 

 
Figure 5: Ranking of afatinib potency for EGFR kinases from experimental (left) and computational (middle and right) 

studies. 

  

Characterisation of EGFR and ErbB-3 heterodimerization: Based on the data from 168 clinical 

subjects, we characterized their corresponding EGFR mutations using molecular interactions, with 

three potential dimerization partners (ErbB-2, IGF-1R and c-Met) of EGFR and two of its small 

molecule inhibitors (gefitinib and erlotinib) (Figure 6) (Publication 4). We comparably examined the 

interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met). 

Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant 

role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical 

outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. 

This may promote the communication between ErbB-3 and c-Met in these cancer cells. The analysis 

verified the important contribution of IGF-1R or c-Met in the drug resistance mechanism developed 

in lung cancer treatments. 

 

Discussion 

 

This project is carried out with close collaborations among medical doctors, chemists and computer 

scientists. Medical doctors from Queen Mary Hospital have provided much needed clinical data. 

Although a large number of EGFR mutations are well known and have been published, there are also 

many so-called “rare” mutations unique to Hong Kong patients. It would be too expensive to study 

all the mutations through biological experiments. In this project, we model EGFR mutants and their 

interactions with drug using computational methods (Publications 1 to 12). Our approach is more 

flexible and can model almost any EGFR mutations and mutant/drug complexes.  

 

Another advantage of using locally collected clinical data is that we have patient information. A 

patient’s physical status, response level to a drug and survival time are all useful for the assessment 

of drug effectiveness. These patient data are also valuable for computer algorithm design and 

verification. For example, we can evaluate the correlation between the EGFR/inhibitor binding free 
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energy and the patient survival time to determine whether the mathematical model using the energy 

measurement is effective. 

 

One might argue that drug resistance levels can be evaluated directly from patient data. Indeed, we 

may be able to know which mutation can cause short or long patient survival time. However, this 

approach is meaningful only if we have a large of number patients for each mutation so that the result 

is statistically significant. In practice, we may just have one or two cases for a rare mutation. In 

addition, the direct observations do not provide any insight into the physical reasons of drug 

resistance. Using our computational method, we can evaluate the change in the protein/drug binding 

strength and identify surface curvature variations, which can lead to the degradation of the drug 

effectiveness. 

 

The focus of our work in this project is to study the resistance of NSCLC patients to the first 

generation (reversible) drugs. When we submitted the application for this project, the second 

generation (irreversible) drugs were still under clinical trials. Although we also did some work on 

second generation drugs, we had very limited clinical data and much more research would be needed 

in the future. Now the third generation drugs are available to overcome the weak selectivity of the 

second generation drugs. However, there are also reports that there can be resistance to these new 

drugs as well. Thus, there is a long battle to fight for NSCLC drug resistance.4-8 

 

In this project, we have studied NSCLC drug resistance based on molecular modelling. The computer 

algorithms can also be extended to the investigation of other diseases if drug resistance can arise from 

protein mutations. 

 

 
 

Figure 6: EGRF related dimers and activation and transduction of downstream signals. 

 

Limitations 

 

As discussed above, our computational analysis can be used to deal with almost any EGFR mutation 

because we can predict the 3D structures of a mutant. The approach is flexible and does not require 

expensive wet-lab biological experiments. However, our method also has several limitations: 

 

The prediction of the 3D structure of an EGFR-drug complex may have a limited accuracy. This 

prediction is based on non-linear numerical optimisation and the procedure can be easily trapped to 

a local optimal solution. We may need to compute the 3D structure multiple times with different 
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starting points and different parameter settings and select the best result. Even so, the final solution 

may not be the globally optimal one. With better mathematical models and faster computers and more 

robust algorithms, we shall be able to improve the accuracy of computational work significantly in 

our future projects. 

 

We have only observed “rare” EGFR mutations locally in Hong Kong. There can be many other 

mutations that we have not discovered so far. To overcome this limitation, we can collaborate with 

hospitals in mainland China and other countries/regions, where there are much more patients and a 

larger mutation database can be built. 

 

In this project, we have only analysed EGFR mutations as a cause of NSCLC drug resistance. Along 

the EGFR related signalling pathways, mutations of other proteins can also lead to drug resistance. 

An investigation of all these protein mutations require much more work, including obtaining gene 

sequence data from patients, modelling the 3D structures of these mutants, and analysing the EGFR 

related protein-protein interactions and signalling network (Publication 12). 

 

Conclusions 

 

In this project, we have investigated mathematical models and computational methods for the study 

of anti-EGFR drug resistance at the molecular and atomic levels. Our project team includes medical 

doctors, chemists, and computer scientists and engineers. NSCLC can be caused by an EGFR 

mutation and another mutation can lead to drug resistance. We have collected EGFR mutation data 

based on reports in the literature and from local hospitals. Many of the mutations observed locally 

are “rare” ones and are unique to the Hong Kong population. Thus, our research work in this project 

is especially useful for Hong Kong to help the treatment of NSCLC patients. 

 

It would be too expensive to determine the 3D structures of all EGFR mutants (over 100 in our 

database) through wet-lab experiments. To solve this problem, we have developed computer methods 

to predict the 3D structures of EGFR mutants and their interaction complexes with NSCLC drugs 

based on molecular modelling and numerical optimisation (Publication 1). Starting from the 3D 

structure of wild type EGFR, which can found in PDB, we build and optimise the structure of each 

EGFGR mutant and drug complex. From this structure, we compute the binding affinity between 

EGFR and the drug. A reduction in the binding strength due to EGFR mutation reflects the occurrence 

of drug resistance. Thus, our method can provide a quantitative measure of drug resistance level. 

 

We have built and published the web-based “EGFR Mutant Structural Database”, which is available 

on online to the public (http://bcc.ee.cityu.edu.hk/SFBG/research_and_publications.html) 

(Publication 2). This database provides information on EGFR mutation, computer predicted 3D 

structure of each EGFR mutant-gefitinib/erlotinib complex, and the drug binding affinity. Once the 

mutation of EGFR is known, one can find relevant entries in the database and determine the drug 

resistance level. Currently the database contains 112 EGFR mutants reported in the literature or 

observed locally. New entries can be added if additional mutations are found clinically. 

 

Protein related biomolecular interactions often take places through surface contact. A high binding 

affinity often involves the match of a convex shape with a concave one. In this project, we have 

studied the surface characteristics of EGFR mutants (Publication 3). A so-called 3D alpha shape 

model is used to reconstruct the outer surface of an EGFR mutant. At each atom on the surface, we 

can evaluate the curvature in terms of convexity or concavity. An important reason of drug resistance 

is the change in curvature. For example, a convex shape can become convex after EGFR mutation 

and reduce the drug binding strength. Our studies provide the root reasons of drug resistance at the 

atomic level. 

 

http://bcc.ee.cityu.edu.hk/SFBG/research_and_publications.html


9 

 

In addition to the 3D structures and binding patterns between EGFR mutants and the first generation 

drugs gefitinib and erlotinib, which are the main objectives of this project, we have also investigated 

the effectiveness of the second generation drug afatinib (Publication 10). Furthermore, we have 

analysed the hetero-dimer formation involving other proteins, such as IGF-1R, ErbB-2 and c-Met, 

along the EGFR related signalling pathways (Publication 4). Much more work is needed in these 

areas once more clinical data are available for new drugs, including the second and third generation 

ones, and for the mutations in other proteins. These problems will be studied in our future projects. 

 

The research results of this project provide deep insight to the fundamental reasons of NSCLC drug 

resistance in terms of molecular structures and EGFR mutant surface characteristics. The findings, 

especially the EGFR Mutant Structural Database, provide a useful reference for medical doctors to 

plan personal treatment of a patient. The computational framework we have developed in the project 

is also useful for the study of other diseases. 

 

Implications 

 

In addition to clinical observations and wet-lab experiments, computational techniques can provide 

powerful tools to study drug resistance. With computer methods, we can often reduce the need and 

expenses of lab experiments. In our approach, we can model almost any protein mutation and 

compute the binding strength between the protein mutant and a drug. We study NSCLC drug 

resistance at the molecular and atomic levels, thus the root cause can be investigated. Although we 

have focused on the first generation drugs in this project, similar principles and the mathematical and 

computational frameworks can be employed to study new drugs as well. 

 

Our computational results can provide a good reference to medical doctors for optimal drug selection 

and personalised treatment planning. Because we can study all combinations of EGFR mutations 

with all drugs, a doctor can easily assess the drug resistance level and design the best therapy for 

every patient by looking up the numerical results we have produced. In addition, from the EGFR 

mutant and drug binding strength, the doctor can estimate the survival time of a patient. Such 

information is useful for the patient as well as the hospital and help them use the correct medicine 

and save the medical cost. 

 

Much research is still needed to study the NSCLC drug resistance problem. Several suggested topics 

are listed below: 

 Collection of mutation data for EGFR and proteins in related signalling pathways locally and in 

other cities/countries 

 Study of the mechanisms of resistance to second, third and newer generations of drugs at 

molecular and atomic levels 

 Analysis of EGFR related pathways and network on how EGFR and other protein mutations 

affect drug resistance 

 Identify possible multiple pathways to block in order to combat drug resistance 

 

Dissemination 

 

Our research findings have already been published in a number of scientific journals. A list of our 

publications is provide below. 

 

We have built a website (http://bcc.ee.cityu.edu.hk/SFBG) to present our research results. The 

website shows our research topics and outcomes. In particular, we publish our “EGFR Mutant 

Structural Database” online. The reader can download the optimised 3D structures of EGFR mutant 

and first generation drug complexes. 

 

http://bcc.ee.cityu.edu.hk/SFBG
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We are currently also discussing the possibility of collaborating with a local biotech company on the 

analysis of resistance to the second and third generation drugs based on computational methods. 
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