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a b s t r a c t

Epidermal growth factor receptor (EGFR) mutation-induced drug resistance leads to a limited efficacy of
tyrosine kinase inhibitors during lung cancer treatments. In this study, we explore the correlations
between the local surface geometric properties of EGFR mutants and the progression-free survival (PFS).
The geometric properties include local surface changes (four types) of the EGFR mutants compared with
the wild-type EGFR, and the convex degrees of these local surfaces. Our analysis results show that the
Spearman's rank correlation coefficients between the PFS and three types of local surface properties are
all greater than 0.6 with small P-values, implying a high significance. Moreover, the number of atoms
with solid angles in the ranges of [0.71, 1], [0.61, 1] or [0.5, 1], indicating the convex degree of a local
EGFR surface, also shows a strong correlation with the PFS. Overall, these characteristics can be
efficiently applied to the prediction of drug resistance in lung cancer treatments, and easily extended to
other cancer treatments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Epidermal growth factor receptor (EGFR) mutations that lead to
its overexpression can activate the anti-apoptotic pathways [1,2],
eventually result in an aberrant proliferation of cells. The aberrant
cell proliferation is a typical cause of human cancers, such as the
non-small-cell lung carcinoma (NSCLC) [3–6]. Clinically, gefitinib
(IRESSATM), a kind of tyrosine kinase inhibitor (TKI), is widely used
to interrupt EGFR downstream signals during the treatment of
NSCLC patients [7,8]. EGFR mutants such as L858R (substitution of
leucine with arginine at residue site 858) show stronger binding
affinity with gefitinib than the wild-type (WT) EGFR [9,10].
However, other mutants such as those with an insertion in exon
20 of the tyrosine kinase domain show weak responses to gefitinib
[11]. Moreover, for the mutant L858R, the efficacy of gefitinib
becomes limited if a second mutation T790M (substitution of
threonine with methionine at residue site 790) occurs [12]. It is
important to study the characteristics of EGFR mutants in order to
understand the mechanism of the mutation-induced drug
resistance.

Recently, computational methods have been efficiently applied
to the studies of drug resistance [13–16]. Sequence-based and
structure-based approaches are the two primary categories of
these computational methods. With the rapid development of
techniques such as X-ray crystallography and nuclear magnetic
resonance (NMR) spectroscopy, three-dimensional (3D) structural
data of proteins become more readily available in structure-related
researches [17]. Zhou et al. [11] conducted a structural exploration
of EGFR proteins, and predicted anti-EGFR drug resistance
based on the binding free energy and hydrogen bond analyses.
Wang et al. [18] employed the computational methods in perso-
nalized prediction of EGFR mutation-induced drug resistance,
using 3D structural data of EGFR proteins. In this work, we
investigated the EGFR mutation-induced drug resistance in lung
cancer treatment, by analyzing the surface geometric properties of
WT EGFR and its mutants. Rosetta [19] was used to generate EGFR
mutants and Amber [20] was applied to optimize the structures of
obtained mutants. Subsequently, we employed the 3D alpha
shape modeling method [21,22] to construct the surfaces of
these EGFR structures, after which a solid angle analysis of the
atoms at the drug-binding sites of EGFR proteins was conducted to
reveal the geometric properties of EGFR surfaces. Finally, we
carried out a correlation analysis [23] on these geometric
properties and the pre-recorded progression-free survival (PFS)
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(the length of time between using TKI and the disease getting
worse [10]) in the treatments. Experiment results show that our
proposed surface geometric properties provide valuable informa-
tion for studying and predicting drug resistance levels in lung
cancer treatment.

2. Materials and methods

2.1. Data collection

The experimental data used in this paper were obtained from the
Queen Mary Hospital in Hong Kong [18]. This data set consists of
clinical observations on 137 NSCLC patients, with gefinitib applied in
their treatments. These patients share a total of 30 EGFR mutation
types, and their statistics are shown in Fig. 1. The mutation types are
notated by their corresponding changes in protein sequences relative
to the WT EGFR [18]. For example, L858R, delE746_A750, dulH773
and delE709_T710insD respectively represent amino acid substitu-
tion, deletion, duplication and modification (deletion plus insertion).
All the EGFR mutants were generated based on the template
structure “2ITY” downloaded from the Protein Data Bank (PDB)
[17]. The progression time (in the unit of month) of gefitinib in the
treatment of each patient was recorded, revealing the drug resistance
levels in each treatment.

2.2. Generating EGFR mutants

We employed Rosetta to generate the EGFR mutants. Rosetta is a
molecular modeling software package for protein structure predic-
tion and analysis of protein structures [24]. It is a popular software
for computational modeling in computational biology and very
successful for de novo protein structure prediction (protein tertiary
structure predicting from the primary sequence) [25]. EGFR mutants
were generated based on the crystal structure “2ITY”, with the drug
molecule removed. For point mutations, the ddg_monomer protocol
in Rosetta 3.4 [26] was adopted using inputs of the template
structure and the protein sequence of each mutant. For deletions,
insertions and duplications, the comparative modeling (CM) protocol
[27] in Rosetta was selected. This procedure includes target–template
alignment, model construction and model assessment. We applied
ClustalW [28], a method for multiple-sequence alignment, to align
the target sequence to the template. In the model construction, a
fragment library should be prepared first. We employed Psipred [29]
to predict secondary structures for each target sequence, and the
fragment picker protocol in Rosetta was selected to pick fragments
(3- or 9-residue long) for the sequence. Such 3-mers and 9-mers

fragment files form a fragment library that can be used in fragment
insertion during the structure prediction. Subsequently, we con-
structed the 3D structures of the mutants using the CM protocol, and
a conservative modeling step was adopted to keep the backbone
atoms consistent with those of the template in well-aligned regions.
The 3D structures of the mutants were assessed by their physics-
based energies, and the one with the minimum energy was selected.
In this process, we used the full atom energy scoring function to
identify accurate structures. The scoring function is a model gener-
ated with various scoring terms and the corresponding weights for
each term [25]. The scoring terms include van der Waals, Lennard–
Jones interactions, residue pair interactions, solvation, rotamer self-
energy, Ramachandran torsion preferences, hydrogen bonding and
unfolded state reference energy. The total score of a predicted
structure is obtained by computing the weighted sum of the scoring
terms. Although the predicted mutations generated with software
simulation methods cannot always correspond exceptionally well
with true structures, based on the observation that similar protein
sequences usually lead to similar 3D protein structures, the com-
parative modeling is very valuable for predicting mutants and it is
regarded as the most accurate prediction method currently available
[27]. After the 3D structures of all the mutants are obtained, Amber
12 [20] was applied to carry out a minimization for each structure
[11]. Each optimized structure was then aligned to the template to
construct a mutant–drug complex, using the structure alignment tool
of the UCSF Chimera [30].

Using Amber 12, the mutant–drug complex was computation-
ally solvated into an octahedron water box (TIP3P model) with
a 10.0 Å buffer around the complex in each direction. The ff99SB
force field was adopted in these simulations. After solvating the
complex, we conducted 1000 steps of minimization for the entire
system to remove bad contacts and find the nearest local minima.
This optimized structure was our final structure for analysis.

2.3. 3D alpha shape modeling

The alpha shape, first defined by Edelsbrunner and Mücke, is a
linear approximation of the original shape [31]. The basic alpha
shape and the weighted alpha shape are the two primary types.
The basic one is based on Delaunay triangulation while the
weighted one is derived from the regular triangulation. Consider-
ing a set of points, the basic alpha shape consists of all the
simplices in the Delaunay triangulation that have an empty
circumscribing sphere with a squared radius equal or smaller than
α [21], where ‘empty’ means that the open sphere includes no
points. On the other hand, the definition of a weighted alpha shape
is based on a set of weighted points [22]. For example, a weighted
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Fig. 1. Statistics of the 30 mutation types of the observed 137 NSCLC patients.
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point pi can be defined in Eq. (1), where p0i represents the location
and p00i is the weight. Two points p1 and p2 are defined to be
orthogonal if Eq. (2) is satisfied, and sub-orthogonal if Eq. (3) is
satisfied. For a given α, the weighted alpha complex is formed by
the simplices that meet the condition, under which there exists a
weighted point with weight α orthogonal to the weighted points
associated with the vertices of the simplex and sub-orthogonal to
all other weighted points:

pi ¼ ðp0i; p00i Þ ð1Þ

∣p1
0p2

0∣¼ p001þp002 ð2Þ

∣p1
0p2

0∣4p001þp002: ð3Þ

In this paper, weighted alpha shape modeling was applied to
construct the surface of each EGFR mutant structure. We adopted
the Computational Geometry Algorithms Library (CGAL) to com-
pute the weighted alpha shape and set the squared common Van
der Waals (VDW) radii as the atom weight. The alpha value and
probe weight were set to be 0 and squared 1.4 Å respectively, in

order to guarantee that the vertices in the weighted alpha shape
correspond to the solvent-accessible atoms.

2.4. Analysis based on solid angles

We used solid angles to characterize the geometric properties of
the EGFR surface atoms, which were extracted using the alpha shape
model. The solid angles of surface atoms can represent the surface
curvature, which is used as a geometric property in this paper.
Concave shapes around the binding sites are more likely to offer
opportunities for drug binding than convex shapes. If the drug binds
to EGFR mutants very tightly, then it will strengthen the response. So
we studied the EGFR mutation-induced drug resistance by analyzing
the solid angles around the binding sites. The definition of solid
angles [32] is as follows: assume P, A, B and C are the vertices of a
tetrahedron with an origin at P subtended by the triangle ABC, and
the dihedral angle between PAC and PBC, PAB and PAC, PAB and PBC,
are denoted by φab, φbc,φac respectively then the solid angle of P can
be expressed in Eq. (4). Further, the solid angleΩ of a surface atomM
can be obtained by summing up all the solid angles with the origin at

Fig. 2. The 3D alpha shapes. (A) WT EGFR. (B) L858R mutant. (C) Alpha shape surface of the binding sites of WT EGFR. (D) Alpha shape surface of the binding sites of L858R
mutant. The major changes around the binding sites compared with WT EGFR are marked with circles. (E) Zooming the two major changes at the left corner of (C).
(F) Zooming the two major changes at the left corner of (D).
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M in the alpha shape (Eq. (5)). We used Eq. (6) to transform these
solid angle values to the range of [�1, 1]:

Ωi ¼φabþφbcþφac�π ð4Þ

Ω¼∑
i
Ωi ð5Þ

Ω0 ¼ cos ðΩ=4Þ: ð6Þ

When the scaled solid angle Ω0 falls into [�1, 0] or (0, 1], the
corresponding shape centered at M is a concave or convex one
respectively. Overall, a specific value of Ω0 represents the concave
or convex degree of an atom.

Fig. 3. Different types of local surface changes. (A) The original surface (WT protein), (B) reverse of one atom, (C) convex degree variation, (D) atom emergence and (E) atom
disappearance.
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Fig. 4. The relation between the PFS and the four types of local surface changes or the number of (A) reversed, (B) degree-varied, (C) emerged, and (D) disappeared atoms.
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2.5. Correlation analysis

Spearman's rank correlation coefficient is a nonparametric measure
of statistical dependence between two variables [23]. Consider two
variables X and Y of size n, they are firstly converted into ranks xi and
yi ði¼ 1;…;nÞ, after which the spearman's rank correlation coefficient
ρ can be computed as follows:

ρ¼ ∑iðxi�xÞðyi�yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑iðxi�xÞ2∑iðyi�yÞ2

q ð7Þ

ρis in the range of [�1, 1], which indicates the dependence between
the two variables. ρ40 means that X and Y are positively dependent,
while ρo0 shows a negative dependence between them. The larger
the absolute value of ρ is, the stronger the two variables are correlated.
A perfect Spearman correlation of þ1 or �1 can occur when each of
the variables is a perfect monotone function of the other, under the

condition that there are no repeated data values in the dataset.
Specifically in our studies, the correlation analysis was applied to the
EGFR surface geometric properties and the pre-recorded PFS, aiming
to extract valuable dependence between them. Moreover, we
employed P-value to test whether ρ was significantly different from
zero. The P-value describes the probability that the statistical result is
equal or more extreme than the actually observed one, with the
assumption of the null hypothesis being true [33]. It was computed
using the permutation test, and the null hypothesis was rejected if the
P-value was less than 0.05.

2.6. Hierarchical clustering method

The hierarchical clustering method is widely used in pattern
classification [34]. There are two approaches, agglomerative clus-
tering and divisive clustering. The agglomerative clustering

Table 1
The Spearman's rank correlation coefficients of four type local surface changes and the PFS.

Types of local surface changes Reverse Degree variation Emergence Disappearance

Concave converting to convex Convex converting to concave Total

Correlation coefficients 0.003 0.61 0.41 �0.63 0.24 0.63
P-value 0.99 3.30E�4 0.03 1.85E�4 0.21 2.17E�4

Table 2
The Spearman's rank correlation coefficients of the number of atoms with different convex degree and the PFS.

Solid angle value range [0.79,1] [0.71,1] [0.61,1] [0.5,1] [0.38,1] [0,1]

Correlation coefficients �0.22 �0.61 �0.61 �0.61 �0.21 �0.40
P-value 0.24 3.11E�4 3.28E�4 3.36E�4 0.25 0.03
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Fig. 5. The relation between the number of convex shapes and the PFS. (A) The total number of convex shapes versus the PFS. (B)–(D) The number of atoms with solid angles
in [0.71, 1], [0.61, 1], [0.5, 1] versus the PFS. Two major clusters are obtained by using the hierarchical clustering method. The mutants involved in clusters 1 and 2 are marked
with “○” and “n” respectively, while other mutants are marked with “þ”.
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method builds a hierarchy of clusters by merging the clusters at
the bottom to move up the hierarchy, while the divisive clustering
approach splits the top cluster to move down the hierarchy. In this
paper, the agglomerative clustering approach was employed to
analyze the relationship of surface geometric properties and the
PFS. We applied Euclidean distance to measure the pairwise
distance between pairs of points, and the points with the shortest
distance were merged into the same class. Then the distances
between the new merged class and the old classes were calculated
to obtain new clusters until all the points were merged into one
cluster.

3. Results and discussion

In order to represent the surface geometric changes of the EGFR
mutants compared to the WT EGFR, we computed the 3D alpha
shapes for the WT and those of the mutants (Fig. 2). Since the
binding site of the EGFR was our main target, solid angles of the
binding-site atoms in the alpha shapes of WT and mutants were
calculated. By comparing the obtained solid angles, we captured

the local surface changes of the mutants compared to the WT
protein.

According to the definition, a concave shape has a solid angle in
the range of [�1, 0], and a convex shape in (0, 1]. By comparing the
solid angle values of the WT and the mutants, we classify the local
surface changes into four types (Fig. 3B–E) for further analysis.
These four types are Reverse, Degree Variation, Emergence and
Disappearance. For an atom with a convex shape in WT, Reverse
means that this atom has a concave shape in the mutant; Degree
Variation denotes that the shape is still convex, but the solid angle
has changed; Emergence indicates that other atoms appear on the
surface and their shapes can be concave or convex; and Disap-
pearance means this atom in the mutant is no longer on the alpha
shape. For a concave shape, the four types of local surface changes
are similarly defined.

There are 14 amino acid residues of 102 atoms at the drug-
binding site of the WT EGFR. We calculated the number of atoms
having the aforementioned four types of changes for the 30
mutation types, compared to WT. According to the recorded PFS
of the 137 observed patients from the Queen Mary Hospital in
Hong Kong, we adopted the median of the PFS for patients sharing

Hierarchical clustering results (atoms with solid angles in [0.71, 1])
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Fig. 6. Hierarchical clustering of the mutants with PFS and the number of atoms with solid angles in (A) [0.71, 1], (B) [0.61, 1] and (C) [0.5, 1].
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the same EGFR mutation type. This median value was recorded as
the PFS for the corresponding mutant. Then we analyzed the
correlations of the four types of local surface changes and the PFS
for all mutation types. The relevance of the four types of local
surface changes and PFS is shown in Fig. 4. Fig. 4A and C shows a
weak correlation between the number of surface atoms with
curvature changes and the PFS. However, Fig. 4B and D shows a
clear correlation. In Fig. 4B, as the number of atoms with degree
variations increases, the PFS decreases in general. In an overall
view of Fig. 4D, the PFS increases when the number of disappeared
atoms increases.

Subsequently, we calculated the Spearman's rank correlation
coefficients for the four types of local surface changes and the PFS
(Table 1). The absolute values of the coefficients for degree
variation and disappearance are greater than 0.6, and the P-values
are much smaller than 0.05. Thus, the coefficients are significantly
different from zero and the null hypothesis is rejected. The
disappearance type has a positive correlation with the PFS, which
indicates that the drug has a longer progression time with the
number of disappeared atoms increasing. However, the degree
variation type shows a negative correlation with the PFS, meaning
that the PFS will decrease when more atoms stay convex or
concave. The reason is that the WT protein has a weaker binding
affinity with the drug molecule compared with many mutants, and
more changes from the WT may result in a stronger binding
affinity with the drug. For the types of emergence and reverse,
they show a weak correlation with the PFS. However, the number
of reverse atoms, in the case where convex shapes are changed to
concave ones, has a strong correlation with the PFS. This means
that if there are more convex shapes becoming concave ones, the
drug molecule can have a stronger binding affinity with the EGFR
mutant, and it will have a longer progression time.

From the correlations between the four types of local surface
changes and the PFS, we can predict the EGFR mutation-induced
drug resistance. If the EGFR mutants have more disappeared
atoms, more atoms with convex shapes converting to concave
ones, and fewer atoms with degree variations, they most probably
have strong binding affinities with the inhibitor gefitinib.

On the other hand, the concave or convex degree of the drug-
binding site of an EGFR structure can be an important factor for
the binding with a drug molecule, thus we conducted an addi-
tional exploration on the correlation between the convex degree of
the binding site and the PFS. Specifically, the convex degree of the
binding site was represented by the total number of convex shapes
or the number of atoms with different solid angle values in [t, 1],
where t is a threshold. A larger t value means that the surface
atoms with solid angle values in [t, 1] are at a higher convex
degree, while a smaller t indicates a lower convex degree. Table 2
shows the scenarios for different t values. The correlation coeffi-
cients are all negative, indicating that the drug tends to have a
shorter progression time when the number of convex shapes
increases. For the cases concerning solid angle values in [0.71, 1]
([01, 1801]), the solid angle values of the corresponding angles are
calculated with Eq. (6), [0.61, 1] ([01, 2101]) and [0.5, 1] ([01, 2401]),
the absolute values of the correlation coefficients are more than
0.6 and the P-values are much smaller than 0.05. This implies
strong evidence to believe the highly correlation between convex
shapes and PFS. Therefore, the null hypothesis can be rejected. The
scatter plot of the total number of convex shapes versus the PFS is
shown in Fig. 5A, while the plot of the number of atoms with solid
angle values in [0.71, 1], [0.61, 1], [0.5, 1] versus the PFS is shown in
Fig. 5B–D respectively.

Moreover, the hierarchical clustering method was employed to
analyze the relationship between the PFS and the number of atoms
with solid angle values in [0.71, 1], [0.61, 1] and [0.5, 1] (Fig. 6).
Two major clusters are obtained from Fig. 6A and B, cluster 1

(G724S_L861Q, …, K757R) and cluster 2 (delE746_A750, …,
dulS768_D770). The clusters in Fig. 6C are different, with the
mutant R776H_L858R in cluster 2. From Fig. 5B, cluster 1 mainly
contains the mutants which have more atoms with solid angle
values in [0.71,1] and smaller PFS. On the contrary, cluster 2 includes
the mutants with fewer atoms in [0.71, 1] and larger PFS. In
addition, similar clusters are found in Fig. 5C and D. Thus, the
hierarchical clustering results are consistent with those from the
Spearman's correlation coefficients.

According to the hierarchical clustering results and the correla-
tion between the number of convex shapes and the PFS, we can
predict whether drug resistance occurs for the mutants. If the
EGFR mutants have more convex shapes with solid angle values in
[0.71, 1], [0.61, 1] or [0.5, 1], they are more likely to be resistant to
the inhibitor gefitinib. However, if they have less convex ones in
these ranges, the drug molecule may have a long progression time.

4. Conclusions

In this paper, we developed a method to predict the EGFR
mutation-induced drug resistance in lung cancer treatment, by
analyzing the local surface geometric properties of EGFR mutants.
Rosetta was employed to construct the 3D structures of these
EGFR mutants. Then 3D alpha shape modeling and a solid-angle
analysis were implemented to reveal the local surface geometric
properties of these EGFR proteins. We classified the local surface
changes of these mutants compared to the WT EGFR into four
types, and the Spearman's rank correlation coefficients were
applied to calculate the correlations between these local surface
changes and the PFS. Our analysis results show that the number of
atoms with the changes of convex shapes converting to concave,
degree variation and disappearance have strong correlations with
the PFS. Moreover, the number of binding-site atoms with solid
angles in [0.71, 1], [0.61, 1] or [0.5, 1] show a strong correlation
with the PFS as well. By using the hierarchical clustering method,
we also analyzed the relationship of PFS and the number of atoms
with solid angle values in [0.71, 1], [0.61, 1] and [0.5, 1]. The
clustering results are consistent with those from the Spearman's
correlation coefficients. These characteristics can be applied to
the prediction of EGFR mutation-induced drug resistance in lung
cancer treatment. Our study indicates that surface geometric
properties of the binding site on a key protein such as EGFR play
an important role in drug resistance prediction, and this method
can also be extended to the investigation of other drug resistance
mechanisms for other diseases.
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