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Abstract—We explore the drug resistance mechanism in non-small cell lung cancer treatment by characterizing the drug-binding site
of a protein mutant based on local surface and energy features. These features are transformed to an eigen-binding site space and

used for drug resistance level prediction and analysis.
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1 INTRODUCTION

UNG cancer is a leading cause of cancer deaths world-

wide [1], [2], [3], [4]. As a primary type of lung cancer,
non-small-cell lung cancer (NSCLC) is an important re-
search topic [5], [6], [7]. Clinically, reversible tyrosine kinase
(TK) inhibitor (TKI) - gefitinib, which targets the kinase do-
main of epidermal growth factor receptor (EGFR), is widely
used in the treatment of NSCLC [8], [9], [10]. This treatment
is especially effective for those patients harboring activating
mutations at the EGFR kinase domain [11]. However, the
drug’s effectiveness gradually decreases after a period of
time, mostly due to a second EGFR mutation [12], [13],
[14]. There is an urgent need to study this EGFR mutation-
induced drug resistance and to explore its molecular mech-
anisms, which will benefit the development of new and
specialized therapies.

Both experimental and computational methods have
been developed to study the molecular mechanisms of
EGFR mutation-induced drug resistance [15], [16], [17], [18].
These studies are primarily focused on decoding the EGFR-
downstream signaling or EGFR-drug binding affinity. By
observing lung cancer cell lines with MET amplification
and those with inhibition of MET signaling, Engelman et
al. [19] proposed that MET amplification could strengthen
PI3K/ Akt signaling by associating with ErbB-3, which leads
to gefitinib-resistance in lung cancer treatments. Yun et al.
[20] showed that a second mutation T790M in EGER tyrosine
kinase domain triggers gefitinib-resistance, as the mutation
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results in an increased affinity for this EGFR mutant and
adenosine triphosphate (ATP). In recent years, computa-
tional methods have become very popular and have been
effectively applied to the studies of drug resistance, with
advantages of high efficiency and low cost [21]. Taking
patient personal features into consideration, Wang et al.
[22] employed binding free energies between EGFR mutants
and inhibitors to predict EGFR mutation-induced drug re-
sistance effectively. In our previous work [23], the molecular
mechanisms of drug resistance was investigated from local
surface geometric properties of EGFR, which showed a close
relationship between the surface curvature of drug-binding
pocket in EGFR and the progression-free survival (PFS) of a
patient.

In this paper, we study the EGFR mutation-induced
drug resistance, by analyzing the geometric properties of the
drug-binding site on EGFR and the binding affinity between
EGEFR and a drug molecule (Fig. 1). Inspired by the concept
of eigenface in human face recognition, in which original
faces can be projected to the eigenface space to achieve
feature dimension reduction, we employ the components
obtained from principal component analysis (PCA) to repre-
sent the EGFR drug-binding site. In our method, Rosetta [24]
was employed to generate the three-dimensional (3D) struc-
tures of EGFR mutants, using the crystal structure of wild-
type (WT) EGEFR as a template. Subsequently, we extracted
the geometric properties of the drug-binding sites on these
modeled mutants, based on alpha shape modeling [25], [26].
Amber [27] was used to carry out molecular dynamics (MD)
simulations and to calculate binding free energies between
our mutants and a drug molecule. The geometric properties
of drug-binding site on EGFR coupled with the mutant-drug
binding affinity were regarded as our principal features, to
characterize an EGFR mutant. PCA [28] was used on the
derived features, to project these original features to those in
a new eigen-binding site space. Finally, the support vector
machine (SVM) [29] was adopted to build a classification
model that correlates the new binding-site features with the
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response level to gefitinib for NSCLC patients.
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Fig. 1. Procedures used in the analysis of EGFR mutation-induced drug
resistance based on eigen-binding site.

2 METHODS

2.1 Modeling of EGFR mutants

We produced the 3D structures of EGFR mutants based
on the crystal structure of WT EGFR (2ITY), from the
Protein Data Bank (PDB) [30]. We used the high-resolution
ddg_monomer (HRDM) protocol in Rosetta software suite
[31] to predict point mutation (amino acids substitution),
and the comparative modeling (CM) protocol [32] to han-
dle multi-point mutation (amino acids insertion, deletion,
duplication and modification) [23].

Both protocols rely on a 3D template structure (WT
EGFR) and a mutation sequence, for the modeling of each
mutant. The Rosetta scoring function can be briefly summa-
rized in the following equation [33]:

P (structure | sequence) 1

x P (sequence | structure) x P (structure) @)
The HRDM protocol allows protein backbones to fluctuate
to a certain degree, and eliminates the range using Ca-
Ca distance restraints. The CM protocol was implemented
based on three steps. First, Clustal W [34] was applied to
align the mutant sequence to the template sequence. Sub-
sequently, the 3D mutant structure was predicted by copy-
ing the template structure of the well-aligned regions and
reconstructing the remaining regions using loop modeling
[33]. Finally, a full-atom refinement [35] was carried out to
improve the predicted model, and the structure with the
lowest energy was selected as the final output.

We further implemented a minimization step using Am-
ber to optimize the predicted structure. This optimized
structure was aligned to the template (2ITY) using UCSF
Chimera [36] to form a complex with the drug molecule
(gefitinib) to calculate the binding free energy between
them.

2.2 Alpha shape modeling and solid angle calculation

Alpha shape modeling was employed to approximate the
molecular surface of an EGFR mutant with a computational
geometric shape. In this study, weighted alpha shapes [25],
[26] were used to represent the surfaces of EGFR mutants.
Each atom of the protein structure corresponds to a weight-
ed point in 3D space, and the weight of a point is defined
as the squared Van der Waals (VDW) radius. Suppose two
atoms can be described as a; = (p1,w;) and az = (p2, w2),
where p;1 and ps stand for the locations of these two atoms
in the 3D space, and w; and wy are the weights of these
two points respectively. The two atoms can be defined to
be orthogonal (L) or sub-orthogonal (Lg) in the following
equation:

if | p1p2 |= w1 + w2, thenai L az @

if | p1p2 |> w1 + we, then a; Lg ag

For a given «, the weighed alpha shape of a protein
can be generated with the simplices where there exists one
weighed point that satisfies orthogonal condition to the
weighed points of the simplex and satisfies sub-orthogonal
condition to those of the others. The Computational Ge-
ometry Algorithms Library (CGAL) [37] was adopted to
compute the alpha shape of each EGFR mutant.

After deriving the alpha shape of an EGFR mutant, we
used the solid angle [38] of each surface atom to describe
the local surface geometric properties. The solid angle €2; at
vertex P in a tetrahedron PABC can be calculated as:

Qi = Pab + Pbe + Pac — T (3)

where @qp, @b and ¢, represent the dihedral angles
between PAC and PBC, PAB and PAC, PAB and PBC,
respectively. By summing up the solid angles of all the
tetrahedrons originated from the same atom, we can average
them to obtain its solid angle 2. Then it is transformed to
the range of [-1, 1] by € = cos(2/4). If Q' > 0, it is a convex
shape. Otherwise, it is a concave shape.

2.3 Molecular dynamics (MD) simulations and binding
free energy calculation

Before calculating the binding free energies between the
EGFR mutants and gefitinib, we carried out MD simulations
using Amber to optimize and equilibrate the mutant-drug
systems. MD simulations are based on the Newton’s second
law of motion. Relying on this motion equation, the trajec-
tories of positions, velocities and accelerations of each atom
can be obtained.

We performed Amber simulations as follows. First, we
generated a TIP3P water box for each mutant-drug complex
using tleap program, as the simulations are conducted in
a computational solvent environment. Then the generally-
used ff99SB force field was employed. The total energy in
the force field consists of bonded terms, related to bond
stretching, angle bending and torsion terms of covalent
bonds, and non-bonded terms, represented by long-range
electrostatic forces and van der Waals (VDW) forces:

Etotal = Estretch + Ebend + Etorsion

4
+ Eelectrostatic + Evdw
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After the optimization and equilibration of each system, a
production MD simulation was implemented to obtain the
motion trajectories of each mutant-drug complex.

Using these trajectories, the binding free energy in the
corresponding mutant-drug system can be calculated. The
MM-GBSA protocol in Amber tools was adopted for the
calculations. In this protocol, the thermodynamic cycle of
the solvent and vacuum environments is the core step,
which avoids massive computations between bound and
unbound states of two solvated molecules, and simply ex-
presses the binding free energy in the solvent environment
(AGbind,solU) as follows:

A Gbind,solv = AC;(bind,vacuvﬂn + AC;solv,con%plew
- (AGsolv,ligand + ACY'solv,receptor)

where AGpind,vacuum is the binding free energy for
a receptor-ligand system in the vacuum environment.
A(;’solv,'r‘eceptor/ AGsolv,ligcmd and AGSOZ’U,CO’H’LPZE:E l"ePl‘esent
the free energy differences between the solvent and vacu-
um environments, respectively for the receptor, ligand and
complex.

©)

2.4 Principal component analysis (PCA)

PCA is widely used in many studies for dimension reduc-
tion, through converting a set of possibly correlated features
into a set of linearly uncorrelated variables called principal
components (PCs) [39], [40]. In other words, the original
feature space is transformed into a new PC space. Given
a data set with real numbers, X = {x) 23 . z0™}
where (¥ is an n-dimensional vector, a normalization pro-
cess (zero mean and unit variance) is first implemented to

obtain the normalized vectors {z(1), 2(2) . 2(™)} Then
the covariance matrix can be computed using the following
equation:
1 & iy G
>— = (@) ,(OT 6
- ; 20z (©)

The PC space is constructed by the corresponding eigen-
vectors or PCs (p1, pt2, - . ., i) of the largest k eigenvalues
of the covariance matrix X. The new vectors p(* with k
(k < n) features can be derived by projecting the original
features to the PC space:

g z®) @)

In our work, the previously extracted mutant features,
namely the geometric properties of drug-binding site and
the mutant-drug binding free energy, represent an original
feature space. Using PCA, this feature space can be projected
to a new PC space, called the eigen-binding site space. This
eigen-binding site space can reveal important properties
of our sampled mutants. Accordingly, based on the new-
space features of our mutants, a further analysis can be
implemented.

p@ = (pfz® plz®

2.5 Classification based on support vector machines
(SVMs)

After deriving new features of our mutants in the eign-
binding site space, we built a classification model using
SVM to group these mutant samples.
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In decades, SVMs have been used effectively to solve
both linear and non-linear classification problems [41], [42].
Given a training data set D = {(z;,y;) | z; € R4 y; €
{~1,1},i=1,2,..., N} and a decision function y;[w” x; +
b] > 1, a two-class SVM searches for an optimal hyperplane
that separates the training samples and maximizes the mar-
gin between the support vectors (SVs) located nearest to
this hyperplane. By defining the Lagrange multiplier o, the
problem can finally be reduced to maximizing L(c) with
respect to c, as shown in the following equation:

N N
max L) = Zai - % Z QYT T )]
i=1 ij=1

For nonlinear classification, kernel functions can be
used. In this work, the Gaussian radial basis function
k(z;, ;) = exp(—g|lz;—x;]|?), which can be rewritten into
k(z;, ;) = ¢(x;)T ¢(x;), was employed. In this regard, the
optimization problem is transformed into the following one:

N | XN
mng(a) = Zai 3 Z aiasyiy;d(xi) d(x5)  9)
i=1 ij=1

3 RESULTS AND DISCUSSION
3.1 Data analysis
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Fig. 2. (A) Statistics of the 62 mutation types occurred in 311 observed
patients. (B) Distributions of the mutation types as well as the number of
patients at each exon.

The data used in this paper were obtained from a
combination of various literatures [22], [23], [43], [44], [45].
Specifically, there are 311 NSCLC patients harboring a total
of 62 mutation types (Fig. 2A). Gefitinib was used for all
these patients during their treatments. As shown in Fig. 24,
L858R and delE746_A750 are the most common mutations
in these patients. The naming rules for mutations are estab-
lished according to the differences of amino acid sequences



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2568184, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

4 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

between the corresponding mutants and the WT EGFR.
All these EGFR mutations occur in the EGFR TK domain,
corresponding to exons 18 to 21 at the gene level. The
distributions of patients and mutation types along the exon
positions are shown in Fig. 2B. Exon 19 holds the largest
number of mutation types, while most of patients harbor
mutations at exon 21. A double-point mutation implies
substitutions of amino acids at two positions of the WT
EGEFR sequence. Based on the sequence information of these
EGFR mutants, we can generate their 3D structures based
on the structure of WT EGFR PDB: 2ITY).

3.2 Prediction of EGFR mutants and calculation of
binding free energy

EGFR mutant structures were generated using Rosetta
based on the 3D structure of WT EGFR and the mutated
sequences. We employed the scoring function with full-atom
energy to evaluate those structures, and the one with the
lowest energy was selected for each mutant. Then Amber
was used to conduct 1000 minimization steps to refine the
structures. Fig. 3 shows the WT EGFR and several examples
of our predicted mutant structures (displayed using UCSF
Chimera).

Posterior to the generation of mutant structures, we
aligned each of them to the template (PDB: 2ITY) to form a
complex with gefitinib. Then the complex was computation-
ally solvated into a TIP3P water box, with a 10.0-angstrom
(A) buffer around the complex. A series of equilibration
steps were subsequently carried out for each solvated com-
plex. Specifically, 1000 circles of energy minimization, 50
ps of heating, 50 ps of density equilibration and 500 ps of
constant pressure equilibration were conducted. To verify
the equilibration of the systems, we checked the curves
of temperature, density, total energy and backbone root-
mean-square deviation (RMSD) for each system, and Fig. 4
presents an example. In this figure, the density, temperature
or total energy of the delL747_K754insSR-gefitinib system
converges in the equilibration period, and the backbone
RMSD is acceptably stabilized.

After the equilibration period, a production MD simu-
lation of 2 ns was implemented, with the trajectories of the
involved complex recorded. Similarly, temperature, density,
total energy and backbone RMSD were checked to validate
the stabilization of the system. Based on these produced tra-
jectories, we can further calculate the binding free energy of
each mutant-drug complex, using the MM-GBSA protocol in
Amber. This binding free energy, coupled with a number of
local geometric properties of the mutant, plays an important
role in characterizing the drug-binding site of a mutant.

3.3 Characterization of the drug-binding site on an
EGFR mutant

Protein function sites control molecular interactions in bio-
logical processes, and thus are crucial for protein function
annotation and rational drug design. Many studies have
focused on analyzing and predicting these functionally im-
portant sites, providing various methods for their represen-
tation. These methods commonly fall into two categories,
sequence- and structure-based approaches. Sequence-based
methods are easily implemented by employing features of

the amino acid residues in the functional important regions
without using any structural information [46], [47]. Muraka-
mi and Mizuguchi used predicted accessibility and position-
specific scoring matrix as sequence features to represent
the potential function site and achieved a best prediction
accuracy of 66.4% with different interface definitions [48].
Ofran and Rost employed features such as evolutionary
profiles, predicted solvent accessibility, secondary structure
and amino acid composition to conduct prediction and ob-
tained an accuracy of 68% [49]. The limitation that only se-
quence information is used to represent the protein function
site makes it difficult to improve the prediction accuracy.
Structure-based methods usually describe the function site
using surface geometric properties of the function sites as
well as physicochemical features, such as hydrogen bond,
hydrophobicity of the side-chain and electrostatic potential
[50], [51], [52], [53]. Porollo and Meller [54] applied structure
features coupled with sequence ones (features based on
protein tertiary structure, single sequence-based attributes,
evolutionary profiles and relative solvent accessibility) to
describe the function site and yielded an overall classifi-
cation accuracy of about 74%. Zhou and Yan computed
alpha shape model of the protein and extracted features
such as residue index (the percentage of each residue type
at the function site), curvature (cleft or knob level) and
connectivity (the connection between surface atoms) of the
function site [55]. Using these features, they carried out
protein function site prediction and achieved an accuracy
of 68.8%.

Considering the specific problem of representing the
EGFR drug-binding site, when choosing features, we should
select those that can distinguish different mutations. In this
work, we finally used 14 features to represent an EGFR
drug-binding site, including surface curvature, connectivity,
atom index and binding free energy.

Surface curvature

We extracted local geometric properties of each mutant,
based on alpha shape modeling. Curvatures of surface
atoms belonging to the drug-binding site were calculated
(Figs. 5A and 5B). In this process, the CGAL was employed
to build the alpha shape of each mutant (Fig. 5C). Specif-
ically, 14 amino acids residues of 102 atoms are located at
the binding site of WT EGFR. Depending on the derived
alpha shape of each mutant, we calculated the solid angles
of the binding-site surface atoms. Finally, the curvature of
a binding pocket is represented by seven terms (named as
curvature indices 1~7): the number of convex atoms having
a solid angle belonging to [0.5, 1], [0.61, 1] and [0.71, 1],
the average and variance of convex atoms, and the average
and variance of concave atoms. The average and variance
of convex atoms stand for the knob level of the binding
pocket. Similarly, the average and variance of concave atoms
represent the cleft level. In [10], the number of convex atoms
with a solid angle in [0.5, 1], [0.61, 1] and [0.71, 1] are highly
correlated with the PFS of a patient, therefore we adopted
them to characterize the binding sites.

Connectivity

The connectivity of a surface atom corresponds to the num-
ber of edges related to this atom in the alpha shape [56].
It is a parameter to represent the connection between one
atom and other surface atoms. We calculated the average
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A

B

Fig. 3. Crystal structure of (A) WT EGFR and the predicted mutant structures of (B) dulS768_D770, (C) G23S, and (D) delE746_S752insV. The
original sites and the corresponding mutant sites (dulS768_D770, G23S, delE746_S752insV) are shown in green, blue and magenta, respectively.
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Fig. 4. The density (A), temperature (B), total energy (C) and backbone RMSD (D) curves of the system involving mutant delL747_K754insSR and

gefitinib.

and variance of the connectivity of the binding-site surface
atoms to represent the mean connectivity and its deviation.
These two features are defined as the mean connectivity and
the connectivity variance.

Atom index

Atom index is defined as the proportion of surface atoms in
all the binding-site atoms. It can reflect the influence of a
local mutation to the surface of a drug-binding pocket.

Binding free energy

We used binding free energy to measure the binding affinity
of an EGFR mutant and gefitinib. Binding free energy is
composed of Van der Waals force (VDWAALS), electrostat-
ic energy (EEL), the electrostatic contributions (EGB) and
nonpolar (ESURF) terms. Accordingly, these energy features
were defined as VDWAALS, EEL, EGB and ESURF. To
normalize these features, we subtracted the corresponding
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C

|

Fig. 5. The drug-binding site of WT EGFR, with gefitinib shown (dark gray). (A) and (B) show the amino acid residues and solvent-excluded
molecular surface of the binding site, colored magenta. (C) The drug-binding pocket represented by an alpha shape.

energy terms of the WT EGFR-drug complex from them.

Overall, we extracted 14 features to characterize each
mutant, and the distributions of these features are shown
in Fig. 6A. In order to compensate the value differences, we
normalized each feature into the range [-1, 1] (Fig. 6B).

The biological importance of these features can be
demonstrated by a case study. L858R is a common mutant
responding to gefitinib in NSCLC patients while the emer-
gence of a second mutation T790M (L858R_T790M) causes
drug resistance. The drug response level (RL) of the two mu-
tants are 2 (L858R, partial response) and 3 (L858R_T790M,
stable disease) respectively, obtained by calculating the me-
dian value of the patients sharing the same EGFR mutation
type. Table 1 lists all the 14 features of the two mutants.
Curvature indices 1 ~ 7 represent the number of convex
atoms with solid angle value belonging to [0.5, 1], [0.61, 1]
and [0.71, 1], the average and variance of convex atoms, and
the average and variance of concave atoms. For the mutant
L858R_T790M, the number of atoms with solid angle value
in [0.5, 1], [0.61, 1] and [0.71, 1] are more than that of L858R.
In addition, the average solid angle values of convex and
concave atoms are larger, even with a greater convex vari-
ance. These curvature features show the geometric changes
(a higher knob level and a lower cleft level) of the drug-
binding pocket of the mutant L858R_T790M compared with
L858R, accounting for the drug resistance of the mutant
L858R_T790M. Although the connectivity and atom index can-
not demonstrate a direct relationship with the drug response
level, they partly reflect the surface changes of a drug-
binding pocket. The energy terms (before normalizing using
the corresponding terms of the WT EGFR-drug complex)
VDWAALS, EEL and ESURF of L858R-gefitinib are all lower
than that of L858R_T790M-gefitinib complex. Even with a
high EGB, still, there is a lower total binding free energy
(summation of the four energy terms) for L858R-gefitinib,
indicating a tighter binding status for L858R-gefitinib than
for the L858R_T790M-gefitinib complex.

3.4 Transformation of a drug-binding site and analysis
of drug resistance based on an eigen-binding site

In the treatments of NSCLC patients, the potency of drug
can be evaluated by PFS or response level to the drug. Re-
sponse levels (RL) include complete response, partial response,
stable disease and progressive disease, mapping to four degrees
of 1, 2, 3 and 4. Since a group of patients may have the same

TABLE 1
COMPARISON OF THE FEATURES FOR THE MUTANTS L858R AND
L858R_T790M.

Feature L858R (RL=2) L858R_T790M(RL=3)
Curvature index 1 6 9
Curvature index 2 4 8
Curvature index 3 4 6
Curvature index 4 0.4700 0.5252
Curvature index 5 0.0876 0.0941
Curvature index 6 -0.6128 -0.5639
Curvature index 7 0.0754 0.0728
Mean connectivity 6.1148 6.4576

Connectivity variance 4.5934 4.2821
Atom index 0.5980 0.5728
VDWAALS -51.6461 -47.1378

EEL -26.1769 -9.8236
EGB 38.4677 29.7224
ESURF -6.6548 -5.9291

mutation in their EGFR TK domains, we took the median
value in this group to represent the response level of this
mutant. For all of our 62 mutation types, the corresponding
normalized binding-site features were examined.

Before analyzing drug resistance using the extracted
14 features, we evaluated the performance of each feature
via leave-one-out cross validation based on an SVM clas-
sification model. SVMs are supervised learning algorithms
with several distinct advantages. The kernel strategy used
in SVMs solves non-linear classification problems and pro-
vides flexibility to choose threshold. A unique solution can
be obtained as the optimization problem is a convex one.
The classification algorithm can be an out-of-sample gener-
alization by choosing appropriate parameters C and r [57].
LIBSVM 3.18 [58] was used in this procedure. For simplicity,
we combined the groups of RL = 1 and RL = 2 to form
a larger group of Response group, and similarly build a No-
response group containing those of RL = 3 and RL = 4.
The performance of the features is shown in Table 2. All the
features contribute to the drug response level prediction, e-
specially the curvature indices. Specifically, curvature index
3 performs well in both the two-group and four response
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Fig. 6. Distributions of (A) the original features and (B) the normalized features.

levels situations with the highest prediction accuracies.

TABLE 2
PERFORMANCE OF EACH OF THE 14 FEATURES IN DRUG
RESPONSE LEVEL PREDICTION.

Accuracy Accuracy
Feature (four drug (two levels of
resistance levels)  Response or No-response)

Curvature index 1 62.90% 72.58%
Curvature index 2 62.90% 77.42%
Curvature index 3 69.35% 80.65%
Curvature index 4 62.90% 69.35%
Curvature index 5 62.90% 67.74%
Curvature index 6 64.52% 70.97%
Curvature index 7 62.90% 66.13%
Mean connectivity 62.90% 66.13%
Connectivity variance 62.90% 67.74%
Atom index 62.90% 66.13%
VDWAALS 62.90% 66.13%
EEL 62.90% 70.97%
EGB 62.90% 66.13%
ESURF 62.90% 66.13%

Different from other studies in which original features
are used to represent drug the binding site directly, we
employed PCA to transform the original binding site to
an eigen-binding site, based on the extracted features. This
eigen-binding site space is formed by the first k eigenvectors
of the mutation-feature covariance matrix (Method/Principal
component analysis (PCA) Section). Each new derived feature
is a projection of the original features to the eigenvector
direction of the corresponding eigenvalue of the covariance
matrix. Considering two largest eigenvalues and the corre-
sponding eigenvectors, in our work, A\; = 0.81, Ay = 0.68, u{
=[0.34, 0.47, 0.49, 0.29, 0.27, -0.03, -0.18, 0.04, 0.01, 0.15, 0.08,
0.34,-0.28, 0.10], pu3 =[0.17, 0.22, 0.24, 0.08, 0.17, 0.05, -0.10,
0.07, 0.04, 0.20, -0.25, -0.63, 0.48, -0.27], then the first two
new features can be obtained with the following equations,
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where f; is the ith original feature.

PCy =0.34f1 +0.47f5 4+ 0.49f3 + 0.29f, + 0.27 f5
—0.03fs — 0.18f7 4+ 0.04fs + 0.01fo + 0.15f19 (10)
+0.08 f11 4 0.34f12 — 0.28 f13 + 0.10 f14

PC5 =0.17f1 +0.22f5 + 0.24f3 + 0.08f4 + 0.17 f5
4+ 0.05fs — 0.10f7 + 0.07fs + 0.04 f9 + 0.20 f1¢ (11)
—0.25f11 — 0.63f12 + 0.48f13 — 0.27f14

The new feature PC is the most important one among
all the new derived features, as it has the largest variance
(corresponding to A;) for all the samples. Similarly, PC5
is the second most important component with the variance
equal to A,. Fig. 7A shows the distribution of the samples
in the PC;-PC) space. Apparently, the centroids of the four
response-level groups are separated. Moreover, the mutants
corresponding to complete (RL = 1) or partial (RL = 2)
response are wide apart, compared to those corresponding
to stable (RL = 3) or progressive (RL = 4) disease. In addi-
tion, the importance of the original features can be obtained
from the new derived ones, according to the significance
of the new features and the contributions of the original
ones. For example, PC] is the most important new feature.
From (10), we can find that curvature indices f3 and f>
have the largest and second largest contributions to PC.
Similarly, energy terms fi2 and fi3 make the largest and
second largest contributions to PCs, according to (11). Thus,
Fig. 7A corresponds to a curvature-energy space, in which
samples of different drug response levels are separated. This
is consistent with our knowledge that surface and energy
properties are key factors in molecular interactions. The
eigen-binding site based framework proposed here provides
a systematic method to study these properties. We further
explored the distribution of the features projected to the first
three PCs. For simplicity, we only show the 3D features and
labels of the two groups (Response and No-response groups)
of mutants in Fig. 7B. These two groups are then fitted to
two surfaces respectively, using the gradient information
(Figs. 7C and 7D). As shown in the figures, the feature trends
of the two groups of mutants are apparently different.

With the features of each mutant projected to the first
several PCs, we employed SVM to build a classification
model to predict the drug response condition of each mu-
tant. The classifier was built for 62 times, each time with 61
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The first two main components

-2

B
The first three main components

Fig. 7. Distributions of mutant samples described with the first several (k) PCs. (A) Projection of the mutant features to the first two PCs (k = 2).
Here blue, red, green and dark circles represent mutant groups that correspond to drug response levels from 1 to 4 respectively, and ™’ stands
for the centroid of each group. (B) Mutant features projected to the first three PCs, with the data set condensed to Response (blue circles) and
No-response (magenta circles) groups. (C) and (D) show the feature trends of the two groups of mutants.

TABLE 3
THE RESULTS OF SVM CLASSIFICATION.

Contribution rate threshold 0.91 0.93 0.95 0.97 0.99
The number of PCs 8 8 9 10 11
Accuracy (four drug resistance levels) 64.52%  64.52% 66.13%  69.35%  69.35%
Accuracy (two levels of Response or No-response) ~ 79.03%  79.03%  80.65%  80.65%  85.48%

samples selected for training and one for testing. The results
are now presented in Table 3. Contribution rate represents
the proportion of the selected eigenvalues in the sum of all
the eigenvalues. In the two-group situation (Response or No-
response), the best accuracy (85.48%) achieves at contribution
rate = 0.99 and PC numbers = 11. For a scenario where four
resistance levels were considered (RL = 1, 2, 3 or 4), the
highest accuracy is 69.35%. The response level to drug is not
only be related to the geometric properties of drug-binding
pocket of EGFR TK domain and the TK-drug binding affin-
ity, but also be affected by personal features of each patient,
such as smoke history, age and gender. Moreover, more
patient data can be collected in future studies, to further
refine our model.
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4 CONCLUSION

In this study, we have proposed an eigen-binding site based
method to analyze the EGFR mutation-induced drug re-
sistance. Instead of using all the original features of the
drug-binding site, we project these original features to an
eigen-binding site space to obtain new features. Then we
built a classification model based on SVM to correlate the
new derived features with the response level to gefitinib for
NSCLC patients.

With a group of EGFR mutants generated by Rosetta, we
employed alpha shape modeling to extract the geometric
properties of the drug-binding site for each mutant. Amber
was used to implement MD simulations for a mutant-drug
complex, and the binding free energy was calculated using
the MM-GBSA protocol. The derived local surface geometric
properties of a mutant, coupled with the mutant-drug bind-
ing free energy, were used as major features to characterize
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a mutant. We built an eigen-binding site space using PCA,
after which the original features were projected to this space.
When the first two or three PCs were considered, the mu-
tants with different response levels were separated. Finally,
SVM was employed to build a classification model and to
predict whether a mutant responds or not to gefinib. The
best accuracy of the leave-one-out cross-validation mecha-
nism reaches 85.48%.

As one of our future works, more clinical data will be
collected to refine our model. When sufficient patients have
the same mutation type, relatively-accurate drug response
levels of the corresponding mutants can be obtained. In
addition, more features of the drug-binding sites can be
extracted to describe each binding site in more detail. These
further studies will benefit cancer drug discovery and per-
sonalized therapy design.
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