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Background subtraction is needed to extract foreground information from a video sequence for further 

processing in many applications, such as surveillance tracking. However, due to the presence of a dy- 

namic background and noise, extracting foreground accurately from a video sequence remains challeng- 

ing. A novel projection method, namely Principal Mode Component Analysis (PMCA), is proposed to cap- 

ture the most repetitive patterns of a video sequence, which is one of the key characteristics of the video 

background. The patterns are captured by applying the bootstrapping method together with the statis- 

tic mode measure. The bootstrapping method can model the distribution of almost any statistic of the 

dynamic background and complicated noise. This is different from current methods, which restrict the 

distribution to a closed-form function. We introduce a mathematical relaxation that can formulate the 

statistical mode measure for a continuous video data. A fast exhaustive search method is proposed to 

find the global optimal solution for the PMCA. This fast method adopts a simplification procedure that 

makes the optimization procedure independent of the video size. The proposed method is computation- 

ally much more traceable than existing ones. We compare the proposed method with 10 different meth- 

ods, including several state-of-the-art techniques, for 19 different real-world video sequences from two 

popular datasets. Experiment results show that the proposed method performs the best in 16 cases and 

second best in 2 cases. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Background subtraction is an essential and fundamental step

n various video-processing problems, such as moving object de-

ection [1] , object tracking [2] , and video surveillance. Due to its

mportance, many different background subtraction methodologies

ave been proposed in recent years [3–5] . One of the common ob-

ectives of applying a background subtraction methodology and an-

lyzing a video sequence is to separate a moving foreground from

 background. An example is a traffic camera that records informa-

ion about vehicles moving on a road. The foreground comprises

he moving vehicles while the background comprises the road. 

The major challenge of the background subtraction problem is

hat a real-world video background is not strictly static but usu-

lly contains noise and dynamic elements such as lighting changes,

avering tree branches, and fountain waterfalls. It is hard to distin-

uish moving foreground objects from dynamic backgrounds. One
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xample is the video surveillance system that monitors the road

ituation [6] . The system of interest may be the moving buses

nd/or moving cars. However, the roadside may have wavering tree

ranches. As these tree branches are in motion, which is similar to

he moving buses/cars, this can confuse current methods and in-

orrectly classify the branches as part of the foreground. 

Many different methods have been proposed to solve the back-

round subtraction problem. However, these techniques still have

vident defects when applied to real-world videos. The first meth-

ds used to estimate a video background are based on the me-

ian, mean, and histogram of all of the pixels across a number

f video frames [7] . After the background is obtained, the fore-

round is obtained by examining the difference between the ob-

ained background and each video frame. Pixels exhibiting large

ifferences across each video frame imply a high possibility of

oreground objects. However, this approach is mainly designed for

ideo sequences with static backgrounds. Dynamic backgrounds

uch as wavering tree branches may be incorrectly classified as

oregrounds. To address these problems, numerous solutions have

een proposed [3–5] . These solutions are mainly based on a

https://doi.org/10.1016/j.patcog.2019.107153
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http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107153&domain=pdf
mailto:bensonlam@hsu.edu.hk
https://doi.org/10.1016/j.patcog.2019.107153


2 B.S.Y. Lam, A.M.Y. Chu and H. Yan / Pattern Recognition 100 (2020) 107153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

b  

p  

d  

e  

p

2

 

m  

b  

l  

t  

n

2

 

b  

W  

t  

a  

p  

t  

m  

m  

i  

g  

a  

f  

g  

b  

G  

a  

s  

f  

i  

a  

m  

T  

a  

p  

a  

t  
method known as robust principal component analysis (RPCA) [8] ,

which decomposes a video sequence into a single low-rank compo-

nent and a sparse component. The optimization problem is given

as follows: 

min 

L , E 
L ∗ + λE 1 , s . t . Y = L + E 

where Y ∈ R 

m l m w ×t is the input video sequence and m l m w 

and t

are the video size and number of frames in the video sequence, re-

spectively. λ is a user-defined parameter. X 

∗ and X 1 are the nuclear

and l 1 norms of the matrix X , respectively. The solution matrices

L and E are the low-rank and sparse matrices, respectively. The

low-rank matrix approximates the background variations such as

wavering tree branches while the sparse matrix models the fore-

ground objects. Although this method gives more promising results

than the classical background subtraction method, it implicitly as-

sumes that the sparse error, or matrix E , follows a Laplace distribu-

tion, which may not be the case in real-world video sequences. Dif-

ferent attempts have been made to replace the Laplace assumption

with different distribution functions, such as a mixture of Gaussian

distributions [9] , a mixture of Power Laplace distribution [10] , and

the Dirichlet process [11] . Although these methods can produce

more accurate video backgrounds, it is difficult to accurately rep-

resent real-world dynamic backgrounds and general noise struc-

tures with a closed-form distribution function. Moreover, the intro-

duction of a mixture distribution usually involves hyperparameters

such as the number of components and the noise level. This hin-

ders the applicability of these methods to real-world video prob-

lems. Another popular approach to handling the dynamic back-

ground problem is to impose total variation regularization on the

sparse error [12–14] . This requires the foreground objects to be

continuous and to change slowly throughout the video time frame.

Although this approach can suppress the negative effects of dy-

namic backgrounds, it introduces user-defined parameters that are

usually data-dependent. Moreover, the regularization is embedded

in the optimization procedure, and tuning the parameters needed

to solve the optimization problem can be very time-consuming. 

To alleviate the aforementioned issues, we propose a novel

methodology that is completely different from the distributional

and total variation approaches. The key idea of the proposed

method is to model the dynamic background and complicated

noise via statistical bootstrapping and statistical mode formulation.

We first apply statistical bootstrapping to the video sequence and

obtain a set of subsamples ( Section 3.1 ). In Section 3.2 , we mod-

ify the l 1 -PCA model and propose a novel PCA method known as

principal mode component analysis (PMCA) to obtain the statistical

mode of each subsample. The statistical mode is the statistic that

captures the most repetitive pattern of the subsamples. By combin-

ing all of these mostly repetitive patterns, a powerful method that

captures the dynamic background and complicated noise is intro-

duced. By examining the differences between these modes and the

original video frames, we obtain an outlier map that contains pre-

liminary information about the foreground objects. The final fore-

ground objects are obtained by applying a morphological operation

to the outlier map. Fig. 1 shows a flowchart for this whole proce-

dure. 

Our work makes the following contributions. 

• We propose the use of the bootstrapping technique for solv-

ing background subtraction problems. The bootstrapping tech-

nique has proved to be an effective tool for estimating almost

any statistic using random sampling methods. This statistical

method has been widely applied in various areas [15 , 16] . In

contrast to the distributional methods, the proposed bootstrap-

ping method can represent a broader range of dynamic struc-

tures without knowing the closed form distribution function. 
• We introduce a novel projection method, namely, PMCA, to cap-

ture the repetitive patterns of a set of sampled video sequences.

We use this novel method to find the statistical mode of the se-

lected samples. As the statistical mode is well defined only for

categorical data, we propose a relaxed version of the statistical

mode that is applicable to video data. We also apply a fast ex-

haustive search algorithm to this problem and obtain a global

optimal solution. 
• The proposed method has a much lower computational com-

plexity than most background subtraction methods. We propose

a robust optimization scheme that can quickly identify the sta-

tistical mode measure of a bootstrapped sample. This optimiza-

tion scheme is not dependent on the video size after some sim-

plifications. This makes the proposed method much more com-

putationally traceable than current methods that must apply a

set of procedures to the whole dataset many times to attain

convergence. 
• We adopt a flexible regularization method and allow the

parameter-tuning procedure to be tunable without solving the

whole mathematical problem again. 

The remainder of this paper is organized as follows. In

ection 2 , we provide an overview of the related work on RPCA-

ased background subtraction methods. We then introduce our

roposed bootstrap-based PMCA in Section 3 . After that, we

emonstrate the robustness of the proposed method via various

xperiments in Section 4 . Section 5 presents our conclusions and

ossible future work. 

. Related work 

In this section, we briefly review the background subtraction

ethods that are related to the RPCA. These methods can be

roadly classified as the probabilistic, spatial-temporal, and online

earning approaches. We also review the bootstrapping method

hat is nowadays a widely used technique in various pattern recog-

ition problems. 

.1. Probabilistic approach 

The probabilistic approach is adopted to impose prior proba-

ility to each of the decomposed components of the RPCA model.

ang et al. [17] proposed a probabilistic robust matrix factoriza-

ion that formulated the sparse component with a Laplace prior

nd the two matrices for the low-rank component with a Gaussian

rior. However, these assumptions may be too restrictive and limit

he model’s ability to handle real-world situations. In addition, this

ethod models the foreground objects in a pixelwise manner. This

ay contradict the characteristics of real-world foreground objects

n that a foreground usually forms groups with a high within-

roup spatial proximity. Later, Wang et al. [18] improved the prob-

bilistic robust matrix factorization model and proposed a new

ramework based on Bayesian formulation. They imposed conju-

ate priors (multivariate normal distribution and Wishart distri-

ution) onto the low-rank component and a generalized inverse

aussian distribution onto the sparse errors. They also introduced

 Markov extension to the model that introduced the within-group

patial proximity effect, which linked the connections between dif-

erent object pixels. Although this imposition offers a higher flex-

bility for model noise and enhances the model’s robustness, it

ssumes that the video noise follows a single distribution, which

ay limit its applicability to real-world data with complex noise.

o deal with general types of noise, several different works have

ttempted to make the model more adaptable by making different

robabilistic assumptions about the noise in video signals. Zhao et

l. [19] modified the aforementioned Bayesian framework and in-

roduced a two-level generative Gaussian approach to model the
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Fig. 1. The procedure of the proposed method. 
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omplex noise. Meng et al. [9] modified the two-level genera-

ive approach and adopted a mixture of Gaussian distribution to

odel a more general noise. This work was extended to a non-

arametric Bayesian adaptive approach by Chen et al. [11] , who in-

orporated the Dirichlet process into the aforementioned mixture

f Gaussian distribution. Cao et al. [10] assumed that the complex

oise followed a mixture of exponential power distributions. Each

omponent in the proposed mixture model is adapted from a se-

ies of preliminary super or sub-Gaussian distributions. Lakshmi-

arayanan et al. [20] proposed a Gaussian scale mixture model that

ould model noise with a heteroscedastic structure. Babacan et al.

21] introduced a different approach and decomposed the sparse

rrors into two different matrices: the sparse and dense error ma-

rices, which are governed by two different Gaussian distributions.

 concept that is similar to the Gaussian mixture model called ker-

el density estimation (KDE) is also adopted for background mod-

ling. Zhang et al. [22] proposed kernel density estimation (KDE) to

odel the video background and adopted the idea that is similar

o the computer game Tetris to update the background iteratively.

erjon et al. [23] modeled both the foreground and background of

he video sequence using the KDE and proposed the use of par-

icle filter to track the motion of the foreground. Although these

robabilistic methods can produce very good results, Wang et al.

24] argued that the assumptions were too restrictive, requiring the

oise of a real-world video to follow a single distribution or a mix-

ure of distributions and limiting the applicability of these meth-
ds in solving practical video-processing problems. Moreover, the

ntroduction of hyperparameters such as the number of noise dis-

ributions, noise variation, and noise level largely increases model

omplexity and redundancy. This implies that the probabilistic ap-

roach cannot fully reveal a complex noise structure and that there

emains a need to model the complex noise more effectively. In

act, Wang et al. [24] suggested adopting a non-probabilistic ap-

roach to capture the key characteristic of the noise signals. They

pplied the Fourier transform to the video signals and transformed

hem in the frequency domain before applying a modified RPCA

odel to the transformed data. However, this method has been

hown to perform well only for synthetic data and four examples

f real-world video sequences. 

.2. Spatial-temporal approach 

Another type of background subtraction technique is to impose

patial-temporal constraints to suppress the negative effects of dy-

amic backgrounds and to obtain more precise foreground objects.

n many real-world video-processing problems, the dynamic back-

round and complex noise signal can corrupt the shapes of fore-

round objects and obtain objects with missing regions. Various

egularization techniques including non-negative matrix factoriza- 

ion [25] , l p norm regularization [26] , and total variation [27] have

een widely applied to introduce additional information and fill

n the missing regions of the detected foreground objects. Guo et
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al. [28] incorporated total variation regularization into the sparse

error term of the RPCA model. This imposes a smoothness con-

straint on the detected foreground objects. Zhou et al. [1] proposed

a model for detecting contiguous outliers in the low-rank represen-

tation (DECOLOR), which decomposes a video input into the fore-

ground and background components. To obtain smooth foreground

objects, total variation regularization is applied to the foreground

modeling. Cao et al. [13] modified the RPCA model by further

decomposing its sparse error term into two different parts: the

intrinsic foreground and dynamic background. The intrinsic fore-

ground is obtained by constraining the output to be smooth, and

total variation regularization is applied. The dynamic background is

formulated as another sparse error, and another l 1 norm minimiza-

tion is introduced. Later, Xue et al. [12] modified this method by in-

troducing a rank-1 constraint to the model. This rank-1 constraint

can model the linear change across video frames and provides a

more effective way to capture the dynamic component of the video

data. Cao et al. [14] introduced the concept of tensor decomposi-

tion to handle the background modeling problem. The video input

is represented not by a two-dimensional matrix but by a three-

dimensional matrix known as the tensor. The authors decompose

the video signal into three different parts, including a low-rank

matrix, sparse noise, and a foreground, which is a continuous ten-

sor. The continuity of the three-dimensional tensor is formulated

by applying a three-dimensional version of total variation regular-

ization. Similar to Cao et al. [14] , Xia et al. [17] proposed a multidi-

mensional tensor and introduced three-dimensional total variation

regularization. Woo and Park [29] proposed a new type of model

that decomposed a video signal into a low-rank non-negative ma-

trix and a l p norm sparse error with a total variation regulariza-

tion constraint. In a low-rank non-negative formulation requires a

small number of non-negative bases in the detected background

and assumes the background is slowly varying. In contrast to the

low-rank formulation of the RPCA model, this non-negative matrix

factorization has an inherent clustering property that automatically

clusters the frames of the video input [30] . This imposes spatial

correlations on the background information. The l p norm, together

with the total variation regularization constraint, requires the fore-

ground to be sparse and the objects of the foreground to be contin-

uous. Yu et al. [31] combined different l p norms with deep learning

methodology [32–34] to extract the foreground from an extremely

low-resolution video sequence. Although the method works very

well, it introduces several different user-defined parameters to in-

dicate the contributions of different l p norms. If any parameter set-

ting is changed, the whole problem has to be solved again, which

may be very time-consuming. Although these methods can pre-

serve the shape of detected foreground objects better and suppress

the negative effect of dynamic backgrounds more effectively, the

spatial-temporal constraint is usually embedded in the optimiza-

tion procedure. Tuning the parameters requires solving the whole

optimization problem again, which is very time-consuming. 

2.3. Online learning approach 

Recently, some works have been devoted to the study of online

subspace learning methods to handle real-time background model-

ing problems [35] . The core idea is to incrementally compute only

one frame at a time and gradually enhance the background estima-

tion by updating each frame. The state-of-the-art approaches along

this research line mainly include OPRMF [17] , GRASTA [36] , GOSUS

[37] , PracReProCS [38] , MeDRoP [39] , and incPCP [40 , 41] . GRASTA

uses an L 1 norm loss for each frame to encode sparse foreground

objects and applies the ADMM technique to update the subspace.

Similar to GRASTA, OPRMF adopts the L 1 norm formulation and

imposes an additional regularization term onto subspace param-

eters to avoid overfitting. GOSUS proposes the use of group spar-
ity to characterize the structure of a video foreground. In addition,

he recently proposed PracReProCS and incPCP are the incremen-

al extensions of the classical PCP algorithm. Although these meth-

ds work very well for the real-time background problems, most

f them rely on the incremental update that computes only one

rame at a time. This is very time-consuming if the video sequence

s very long. 

.4. Bootstrapping 

Bootstrapping method has been widely used in various pattern

ecognition problems including object classification [42] , handwrit-

en digit recognition [43] , mode seeking [44] , etc. One of the most

ell-known bootstrapping-based classifiers is the Random Forest.

ts essential idea is to perform sampling to the original dataset and

hen apply the Decision Tree method to each of the subsample. Af-

er that, they adopt majority principle to determine the class labels

f the objects. A major merit of the bootstrapping method is that

t can model nearly any distribution. It is also proved to be robust

o handle various complicated problems. Although this method has

een applied in various areas, there is not much change about

ampling procedure. Even to the three example applications (object

lassification [42] , handwritten digit recognition [43] , mode seek-

ng [44] ), the authors apply the bootstrapping method by sampling

he original data and then apply the proposed method to the sub-

amples. However, to the best of our knowledge, it is hard to find

esearch work that applies bootstrapping method to solve back-

round modeling problems. 

In this paper, we propose a novel bootstrapping-based projec-

ion method called principal mode component analysis (PMCA). It

an address the major limitations of the existing background sub-

raction methods. The probabilistic approach assumes the distribu-

ions to have closed-form expressions, which confines the applica-

ions of existing methods to more general situations. The proposed

ethod adopts bootstrapping method, which can model nearly

ny distribution and thus is able to represent a boarder range of

ynamic structure without knowing the closed-form distribution

unction. The spatial-temporal approach introduces regularizations

o better preserve the shapes of the extracted foregrounds. How-

ver, tuning the parameters need to solve the whole optimization

roblem again, which can be very time-consuming. The proposed

ethod first adopts a fast method to find the global optimal so-

ution of the problem, which takes only several seconds to ex-

ract the foreground from a video sequence with over 40 0 0 frames.

oreover, we introduce the use of morphological operation that

oes not need to solve the optimization problem again. For the on-

ine learning approach, it adopts an incremental update that com-

utes only one frame at a time, which can be time-consuming. The

roposed method adopts a fast approach to solve the optimization

roblem. 

. Methodology 

The flowchart of the proposed method is shown in Fig. 1 . In

ection 3.1 , the statistical bootstrap method generates a set of sub-

amples. For each subsample, we perform a series of operations

 Section 3.2 ). First, a relaxed l 0 norm measure is used to find the

ost repetitive static background ( Section 3.2.1 ). Then, an orthog-

nal projection is performed to the subsampled sequence, which

an eliminate the static background of the subsampled sequence.

he motion background (such as wavering tree branches) are ex-

racted by a combination of the relaxed l 0 norm measure and l 1 -

CA method ( Section 3.2.2 ). After that, the foreground objects of

he subsample can be identified by taking orthogonal complement

f the static and motion backgrounds. Finally, by combining all the
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Table 1 

The procedure for statistical bootstrapping. 

Input: Original dataset X , the subsample size m 

Output: Distribution of the statistic u 

Step 1. x 1 , x 2 , . . . , x m are subsamples that are drawn with replacement from the original dataset X . 

Step 2: Compute a statistic u from the drawn subsamples. 

Step 3: Repeat Steps 1 and 2 many times. 
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oreground objects from all subsamples and applying the regular-

zation ( Section 3.3 ), we obtain the foreground map. 

.1. Statistical bootstrapping for modeling the distribution of a video 

ackground 

In statistics, the bootstrapping method is used to apply random

ampling with replacement to the collected samples, also known

s a subsample, and to estimate the distribution of a statistic,

uch as an arithmetic mean [15 , 16] . This method has proved to be

owerful and can model almost any statistic. It has been widely

pplied to various image processing, computer vision, and pat-

ern recognition problems. The bootstrapping method procedure is

riefly summarized in Table 1 . The sample size n boot controls the

umber of possibilities included in the calculation of the statistical

ode measure. In our study, this parameter controls the number

f video background frames included in the study. If the repetitive

atterns dominate the video sequence, a small n boot is enough to

apture the video background. However, if the repetitive patterns

o not dominate the video sequence, a larger n boot may be needed.

n our experiments, the repetitive patterns dominate the video se-

uences and a small sample size n boot = 50 gives good results. 

.2. Modeling the statistic of a dynamic background by principal 

ode component analysis (PMCA) 

To model the statistic of a dynamic background, we propose a

ovel PCA method, namely, PMCA, that decomposes a subsample

nto a set of orthonormal projection vectors { v 1 , . . . , v m 

} . That is,

or a given video subsample X = [ x 1 , x 2 , . . . x m 

] , 

 = α1 v 1 v 
T 
1 + . . . αm 

v m 

v T m 

, 

here α1 , . . . , αm 

are the projection coefficients. We require that

he first several projection vectors extract the most repetitive pat-

erns of the video sequence. In many real-world video sequences,

ynamic backgrounds are usually periodic and exhibit repetitive

atterns, such as the wavering tree branches. These most repeti-

ive patterns are the items that appear most throughout the video

equence and thus can be modelled by the statistical mode mea-

ures. 

.2.1. Relaxed l 0 norm expression 

To capture the most repetitive patterns of a video sequence, we

dopt the l 0 norm, the sparse version of which has been widely

sed in numerous computer vision and pattern recognition prob-

ems [8 , 45] . The l 0 norm counts the number of non-zero elements

n a vector [46] . Given a categorical vector x = [ x 1 , x 2 , . . . x m 

] T , the

tatistical mode can be obtained by minimizing the following opti-

ization problem: 

 q = argmin 

c 
x − c 1 0 , (1) 

here 1 is a vector of ones. The global optimal solution m q is the

lement that can cause the most categorial elements of the vec-

or to be zero. In other words, this is the statistical mode of the

ata. However, the l 0 norm does not have a closed-form mathe-

atical expression, which makes the optimization problem diffi-

ult and not generalizable to quantitative data. We apply a theory
rom classical mathematics to relax the l 0 norm and express it in

 continuous function. By taking the limit p of the l p norm to be

ero, the l p norm approaches the l 0 norm. Mathematically, this is

lim 

 → 0 
f p = exp { ∫ 

X 
log | f | dμ} [46] . Its direct discrete approximation is

hen given by lim 

p → 0 
x p = exp { ∑ 

i 

log | x i | } . With this relaxed l 0 norm

xpression, the optimization problem in Eq. (1) becomes 

i n c exp 

( 

m ∑ 

i =1 

log | x i − c | 
) 

. (2) 

If x = [ x 1 , x 2 , . . . x m 

] T is a categorical vector, the global optimal

olution of Equation (2) is the statistical mode of x . When c is the

ost frequently appearing item, more logarithm terms of the ob-

ective function become negative infinity, and thus a smaller value

s obtained. To avoid singularity in Equation (2) , we regularize the

bjective function as min 

c 
exp ( 

∑ 

i 

log ( ε + | x i − c | )) , where ε is a

mall value taken as 10 −4 in our experiments. As the exponential

unction is monotonic, the optimization problem can be simplified

s follows: 

i n c 

m ∑ 

i =1 

log 
(
ε + x i − c 2 2 

)
. (3) 

Here, we apply the l 2 norm to generalize the optimization prob-

em and apply it to multivariate and quantitative data. The solu-

ion vector c is the relaxed version of the statistical mode of the

ubsample. By projecting the subsamples to this vector space, the

ostly repetitive pattern of the video samples is obtained. The

ector space is constructed by normalizing the vector of the so-

ution of Eq. (3) , that is, v 1 = c / c 2 . In background modeling, the

ost repetitive pattern of a subsample is the static background.

herefore, the vector space spanned by v 1 captures the static back-

round of the video sequence. To find the motion repetitive pat-

erns, we construct more projection vectors and we apply an idea

hat is similar to the widely used l 1 -PCA method. This is explained

n next section. 

.2.2. Constructing the rest of the projection vectors 

To capture the most repetitive patterns of the motion back-

round, we construct p 

th projection vectors with each of which

apture some mostly repetitive motion patterns. This can be

chieved by applying a modified version of the widely used l 1 -PCA

odel [47] : 

i n c , s i ∈ { −1 , 1 } 
m ∑ 

i =1 

d ( x i , s i c ) , where d ( x i , s i c ) = log 
(
ε + x i − s i c 

2 
2 

)
. 

(4) 

This optimization problem is similar to Eq. (3) except that the

inary variable s i ∈ { −1 , 1 } is introduced. The l 1 -PCA model has

roved to be a robust tool for extracting the most useful features

f data. This model adopts the Euclidean distance, which takes

( x i , s i c ) = x i − s i c 
2 
2 

in Eq. (4) . This implicitly partitions the data

nto two clusters, and vector c is the direction vector between the

wo cluster representatives that are computed as the signed mean

f the data. This is mathematically justified, and the details can be
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Fig. 2. Illustration of the l 1 -PCA. 
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found in Appendix A (in the online supplementary materials). This

property of the l 1 -PCA model is illustrated in Fig. 2 , which shows

two spherical clusters. s i = −1 and s i = 1 can be treated as labels

of the data samples. The samples of the left cluster are represented

by s i = −1 while the samples of the right cluster are represented

by s i = 1 . Vector c is the direction vector between the two cluster

centers, which are the means of the two clusters. However, for the

background subtraction problem, the means adopted by the l 1 -PCA

model are not robust to outliers, which are the foreground objects

of the video sequence and always exist in a video sequence. The

proposed model ( Eq. (4) ) uses a logarithm of Euclidean distance,

which is a robust to the presence of outliers. Moreover, due to the

characteristics of the statistical mode, the vector c projects the data

to their mostly repetitive pattern. Similar to the first component,

the projection vector is obtained by normalizing the solution vec-

tor with the l 2 norm. 

We introduce fast exhaustive search methods to find the global

optimal solutions to both the statistical mode problem and the

modified l 1 -PCA problem. Intuitively, the global optimal solutions

of Equations (3) and ( 4 ) are one of the samples of the data, that is,

x k for some k , and one of the signed samples, that is, s k x k for some k ,

respectively. When the Euclidean distance x i − s i c 
2 
2 goes to zero,

the distance function d( x i , s i c ) becomes log (ε) , which is an ex-

tremely small number. Based on this observation, we can find the

global optimal solution to each of the problems. By enumerating

each of the samples, the statistical mode problem ( Equation (3) )

can be expressed as 

mi n j 

m ∑ 

i =1 

log 
(
ε + x 

T 
i x i − 2 x 

T 
i x j + x 

T 
j x j 

)
. (5)

For the modified l 1 -PCA problem ( Equation (4) ), we must first

remove the samples that were previously selected as optimal solu-
Table 2 

Algorithm to solve the relaxed l 0 problem and the modifie

Input: Data Y = [ y 1 , y 2 , . . . y m ] 
T 

Output: Vector v p 
Step 1: Compute Y 2 = Y Y T . 

Step 2: If it is to find the first component v 1 , go to Step

Step 3: For j = 1 to m , compute J j = 

m ∑ 

i =1 

log ( ε + Y 2 
ii 

+ Y 2 
jj 

−
Step 4: Remove the samples that are selected as optim

Step 5: For each j, compute J j = 

∑ 

i =1 

log ( ε + Y 2 
ii 

+ Y 2 
jj 

− 2 | Y
Step 6: j ∗ = argmi n j J j . The output is obtained by v p = y j
ions to avoid selecting the same sample more than once. Equation

4) can then be expressed as 

i n j , s i ∈ { −1 , 1 } 
∑ 

i =1 

log 
(
ε + x 

T 
i x i − 2 s i x 

T 
i x j + x 

T 
j x j 

)
= mi n j 

∑ 

i =1 

log 
(
ε + x 

T 
i x i − 2 

∣∣x 

T 
i x j 

∣∣ + x 

T 
j x j 

)
. (6)

The equality holds because s i is a binary variable and the mini-

um is attained only if −2 s i x 
T 
i 
x j = −2 | x T 

i 
x j | . For the preceding two

roblems Eqs. (5) and ( (6) ), the dot products x T 
i 
x i and x T 

i 
x j can

e pre-computed. The computation complexity for all of these m

erms is thus O(mD 

2 ) for x i ∈ R D . After that, we must only enu-

erate different combinations by performing addition and taking

he logarithm. The computation complexity of finding the global

ptimal solution is very low, making it possible to obtain a fast

nd accurate solution. The full algorithm is described in Table 2 . 

Fig. 3 shows 10 video frames of the video sequence “Fall.”

The first four frames (i.e., Fig. 3 (a)–(d)) are the wavering tree

ranches and comprise the background, while the last six frames

i.e., Fig. 3 (e)–(j)) contain the moving truck and outliers and com-

rise the foreground. The number of frames that contain outliers

s higher than the number of frames without outliers. After apply-

ng the algorithm in Table 2 , video frame 2 is selected as the first

omponent while video frame 3 is selected as the second compo-

ent. Obviously, these frames comprise the video background. In

his example, we can see that the proposed PMCA is robust to out-

iers even though the number of outliers exceeds 50% of the total

amples. The PMCA is successful due to the characteristics of the

tatistical mode of the method. The four inliers are visually similar

o one another, while the six outliers are relatively different from

ne another. This makes the four inliers form a compact group and

ecome the “item” that appears most. However, the six outliers do

ot have this property and are dispersed. In this case, one of the

our inliers is easily identified as a mode of the data. Figs. 4 and 5

how the first and second projected component of the Frames 552

o 556, Frames 1 to 4 and Frame 551 respectively. The first com-

onent represents the mostly appeared static background. We can

ee that the truck is removed from Frames 552 to 556 and only

he trees and the road are remained. The second component rep-

esents the motion background that appears most. Some images

n Fig. 5 show some white dots and they are the wavering tree

ranches and leaves. It is noted that Frame 2 is blank because it

s the static background and has been removed in the first compo-

ent. Moreover, the two components are required to be orthogonal

o each other. That ensures the information extracted are different.

o, these two components can represent a more complete dynamic

ackground information. 

To guarantee the projection vectors that are orthogonal to one

nother, we apply the orthogonalization procedure introduced by

wak [47] . After obtaining the ( p − 1 ) th projection vector, the pro-

ected subsample is first projected to the following subspace: 

 i ( p ) = 

(
I − v p −1 v 

T 
p −1 

)
x i ( p − 1 ) = x i ( p − 1 ) 

−
(
v T p −1 x i ( p − 1 ) 

)
v p −1 , (7)
d l 1 -PCA problem. 

 3. Otherwise, go to Step 4. 

2Y 2 
ij 
) . Go to Step 6. 

al solutions for the previous projection vectors. 

 

2 
ij 
| ) . 

 

∗ / y j ∗ 2 
. 
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Fig. 3. Illustration of the robustness of the proposed method to outliers. A truck passes in front of a tree shaken by the wind. 

Fig. 4. The first projected component of the video frames shown in Fig. 3 . Only static background is retained. The truck from Frames 552 to 556 are removed. 

Fig. 5. The second projected component of the video frames shown in Fig. 3 . Some of the tree shaken are extracted. 
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here I is the identity matrix, v p −1 is the ( p − 1 ) th principal com-

onent, and x i (0) = x i . We then treat the projected dataset X (p) as

nput data and apply the algorithm in Table 2 again to find the p 

th 

rojection vector v p . As v p is a normalized sample drawn from the

rojected subsample { x i ( p − 1 ) } m 

i =1 
, we must have 

 

T 
p v p −1 = 

x i ( p ) 
T v p −1 

x i ( p ) 2 

= 

(
x i ( p − 1 ) 

T v p −1 −
(
v T p −1 x i ( p − 1 ) 

)
v T p −1 v p −1 

)
x i ( p ) 2 

= 0 , 

(8) 

hich means that v p is orthogonal to v p −1 . The same technique

an be applied to show that v T p v j = 0 , f or j = 1 , 2 , . . . p − 2 . Thus,

he obtained projection vectors are orthonormal to one another. 

.2.3. Identifying the foreground objects 

To identify the foreground objects from a video sequence, we

nd the orthogonal complement of the subspace obtained by the

rojection vectors. The projection vectors V = [ v 1 , . . . v d ] form a

ubspace that represents the most repetitive patterns of the video

equence. Its complement is the non-repetitive patterns, which are

he outliers and thus the foreground objects. Given the k th subsam-

le obtained from the bootstrapping method, the absolute residual

atrix R (k) can be computed by applying the orthogonal comple-
ent to video sequence X . That is, 

 it ( k ) = 

∣∣((I − V V 

T 
)
X 

)
it 

∣∣, (9) 

here ( X ) it is the (i, t) th entry of matrix X . Fig. 6 shows an example

f residual matrix R(k) at the (i, t) th entry of matrix X with 45

ootstrap subsamples. To identify whether a pixel of a video frame

s an outlier, we construct an outlier map O it by considering the

0th percentile of the (i, t) th entry of all of the residual matrices

 (k), for k = 1 , . . . n boot . 

 it = the 10 th percentile of R it ( k ) , (10)

If O it is too small, the i th entry of the t th video frame is similar

o some of the most repetitive patterns. In other words, this entry

as a high chance to be a video background. 

.3. The proposed algorithm 

In this section, we combine all of the procedures introduced in

he previous sections and explain the whole proposed method. The

omplete algorithm is shown in Table 3 . We first rescale the video

ize to one of the three scales, that is, the original scale, 75% of the

riginal size, or 50% of the original size, to incorporate multi-scale

nalysis into our proposed method. Multi-scale analysis has proved

o be a robust tool for computer vision problems [4 8 , 4 9] . In each

cale, we apply the bootstrapping method to generate n boot sub-

amples. For each subsample, we find the projection vectors and

btain residual matrices R (k) for k = 1 , . . . . n . As we need all of
boot 



8 B.S.Y. Lam, A.M.Y. Chu and H. Yan / Pattern Recognition 100 (2020) 107153 

Table 3 

Proposed bootstrapping-based PMCA method. 

Input: Video sequence X , number of projection vectors d, number of subsamples n boot , subsample size m and size of the structural element S disk 

Output: Foreground map F 

Step 1: Repeat the following steps with three different scales (s video = 50%, 75%, 100%): 

Step 1a: Resize each of the video frames to be s video of the original size and obtain X s . 

Step 1b: Set T as an empty three-dimensional array with size m l × m w × m d . 

Step 1c: Repeat the following steps n boot time 

Step 1c-(i) [Section 3.1] : Perform bootstrapping on video sequence X s and obtain the k th subsample. The size of each subsample is m. The details are 

shown in Table 1 . 

Step 1c-(ii) [ Sections 3.2.1 & 3.2.2 ]: To find d projection vectors, perform the following steps d times 

Step 1c-(ii)a: Find a projection vector by Table 2 . 

Step 1c-(ii)b: Perform orthogonalization by Eq. (7) . 

Step 1c-(iii) [Section 3.2.3] : Compute the residual matrix R (k) using Eq. (9) and take T ( : , : , k ) = R (k) . 

Step 1c-(iv) [Section 3.2.3] : Sort array T from smallest to largest with respect to the third dimension of this matrix. 

Step 1c-(v) [Section 3.2.3] : Keep the smallest (0.1 × n boot ) 
th entries of sorted T and remove the rest of them. 

Step 1e [Section 3.2.3] : Find the outlier map O by taking the maximum of the sorted T in the third dimension. 

Step 1f [Section 3.2.3] : Resize the outlier map O by 1/s video so that it has the same size as the original video. 

Step 2 [Section 3.2.3] : Find outlier map O min by ( O min ) i j = minimum of the (i, j)th entry of the three outlier maps. 

Step 3: Apply the morphological operation to outlier map O min with a disk structural element and size S disk . Output foreground map F . 

Fig. 6. An example of the residual matrix R(k) at the (i, t) th entry. [A larger version 

can be found in Appendix B.]. 
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1 http://perception.i2r.a-star.edu.sg/bkmodel/bk index.html , 
2 http://changedetection.net . 
the entries within the 10th percentile of the residual matrices, we

need only to record the 0.1 × n boot smallest values for each pixel

of the video frame. This is carried out in Steps 1c-(iii) and 1c-(v).

This can save much computer space. After that, we obtain the out-

lier map by taking the maximum of array T in the third dimen-

sion. This is because array T only records all of the values within

the 10th percentile of the residual matrices. The largest value is

the 10th percentile of the residual matrices. In Step 2, we combine

the three outlier maps by taking the minimums of the respective

entries of these three maps. This combined outlier map is resized

to be the same size of the original video frame. Finally, the outlier

map is polished by a morphological operation with a disk struc-

tural element and size S disk . 

4. Experiments 

In this section, we compare the performance of the proposed

method with that of state-of-the-art methods in addressing the

background subtraction problem. We adopt an F-measure to assess

the performance of different methods. The F-measure has been

widely used as an evaluation metric in various background sub-

traction works [12–14 , 29] . It is defined as follows: 

F − measure = 2 

precision × recall 

precision + recall 
(11)
Precision and recall are calculated as follows: 

recision = 

# correctly classified foreground pixels 

# pixels classified as foreground 

(12)

ecall = 

# correctly classified foreground pixels 

# foreground pixels in ground truth 

(13)

The F-measure balances precision and recall and gives a score

hat shows the degree of similarity between the detected fore-

round objects and the ground truth foreground area. A larger

alue means a higher similarity. We compare the performance of

he proposed method with that of 10 different methods, including

 V-RPCA [13] , T V1-RPCA [12] , OMGMF [30] , RPCA [8] , Tensor-RPCA

14] , Lag-SPCP-QN [50] , MoG-RPCA [19] , GreGoDec [51] , RegL1-ALM

52] , and MBRMF [18] . We adopt the default parameter settings for

ach of these methods. Some of the methods adopt different pa-

ameter settings for different videos, and we follow all of these

ettings. For the proposed method, we use the same set of param-

ters for all of the experiments. We set the number of projection

ectors d = 2 , the number of subsamples n boot = 50 , the subsample

ize m = 10 , and the size of the structural elements s disk = 5 . 

For the dataset, we adopt all nine videos from the I2R dataset

6] , 1 five videos under the category of dynamic background from

he CD.net dataset [53] , 2 and five videos under the category of

hadow from the CD.net dataset [53] . 2 These datasets include vari-

us real-world scenes ranging from simple scenes (e.g., Hall, Boot-

trap, Shopping-Mall) to illumination changes (e.g., Lobby) and

ynamic backgrounds (e.g., Escalator, Curtain, Water-Surface). We

dopt all of the video frames in each of our analyses. We resize

ome of the videos if they are too large. 

Results for the I2R dataset : The quantitative results of different

ethods for the nine videos from the I2R dataset are shown in

able 4 . Each value is the averaged F-measure taken over all of

he foreground-annotated frames in the corresponding video. The

est result for each video is shadowed. The proposed method ob-

iously performs best in all nine videos; it even outperforms the

econd best method over 12% for the fountain video. For the rest

f the videos, the proposed method is better than the second best

ethod (around 2-5.4%). This shows the superiority of the pro-

osed method to that of state-of-the-art methods. Fig. 7 (a larger

ersion can be found in Appendix B (in the online supplemen-

ary materials)) shows the foreground detection results of different

ethods for the fountain and lobby videos. The fountain video has

http://perception.i2r.a-star.edu.sg/bk
http://changedetection.net
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Table 4 

F-measure (%) comparison of different methods for all video sequences from the I2R dataset. [The recall measure can be found in Appendix 

C.]. 

Campus Fountain Hall Lobby Curtain Bootstrap Shopping-Mall Escalator Water-Surface 

TV-RPCA 0.8027 0.7465 0.6184 0.6723 0.7565 0.6776 0.6595 0.7354 0.8511 

TV1-RPCA 0.7005 0.7309 0.5932 0.7148 0.785 0.6645 0.7393 0.7446 0.8137 

OMGMF 0.4557 0.6225 0.575 0.7532 0.8623 0.6371 0.7173 0.5855 0.8737 

RPCA 0.5564 0.7108 0.5568 0.7319 0.722 0.6741 0.7505 0.6987 0.424 

Tensor-RPCA 0.5629 0.7107 0.6336 0.2054 0.8852 0.5147 0.6015 0.6294 0.8902 

Lag-SPCP-QN 0.4438 0.6378 0.6695 0.6586 0.849 0.6329 0.7169 0.5992 0.8718 

MoG-RPCA 0.4412 0.715 0.6164 0.758 0.6668 0.6181 0.7291 0.5461 0.7498 

GreGoDec 0.4227 0.6491 0.6462 0.4383 0.8527 0.6313 0.7113 0.5987 0.8746 

RegL1-ALM 0.4439 0.6363 0.6688 0.6618 0.8586 0.638 0.717 0.0894 0.8716 

MBRMF 0.4534 0.6476 0.6391 0.7692 0.8362 0.6583 0.7154 0.6181 0.8733 

Proposed 0.821 0.8675 0.7009 0.8234 0.9184 0.7072 0.792 0.7638 0.9382 

Fig. 7. Visual comparison of different methods for the Fountain Video (second to fourth row) and Lobby Video (last three tows). 
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 dynamic background, which is a waterfall fountain. For the foun-

ain video results, most of the TV regularization-based methods

T V-RPCA, T V1-RPCA, and Tensor-RPCA) overly preserve the con-

inuity of the foreground objects. Some of the objects are merged

ogether and lose detailed information. To tune the parameter set-

ing of these methods and obtain a better result, the whole op-

imization must be applied again. This can take much time. In

ontrast with the TV-based RPCA methods, the distributional ap-

roaches (such as MoG-RPCA and MBRMF) perform well only in

he video sequences: Curtain, Shopping-Mall and Water-Surface.

he reason may be that the assumed distributions of these mod-

ls cannot fully reflect the key characteristics of the complex and

ynamic background patterns. For MoG-RPCA, it adopts the mix-

ure of Gaussian to model the complex and dynamic background

atterns. Although mixture of Gaussian is proved to be a power-

ul tool, it is hard to precisely determine the number of Gaussian

f the model. A non-optimal number of Gaussian may lead to a

ess accurate result. For the MBRMF, it adopts a Bayesian prior ap-

roach to model the parameters of the projected components and

he complex and dynamic background patterns. It works well only

f the Bayesian prior can model the situations well. However, for
he complex and dynamic background patterns, the distributions

an be in various forms. The assumed prior distribution may not

ully reflect the real-world situations. For the proposed method,

he results show that it can capture the spatial information of

he foreground objects more accurately. For the lobby video, the

ideo contains scenes of lights switching on and off. Some of the

ethods fail to detect the foreground objects and incorrectly de-

ect the ceiling lamp as a foreground object. The proposed method

nd some state-of-the-art methods (such as OMGMF) can detect

he foreground objects (fifth row) even though the moving person

s relatively small in the video sequence. The performance of the

roposed method is superior to that of state-of-the-art methods

ecause bootstrapping the statistical mode of the video sequence

aptures almost all of the background video frames and constructs

 more complete structure of the dynamic background. Although

he fountain video has a water fountain in the background that

onfuses many of the methods, the proposed method captures all

f the video frames that have different forms of the water fountain.

hen a video frame is similar to one of these background video

rames, it is treated as background. Similarly, although the lobby

ideo features lights changing, which has a great visual impact, the
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Table 5 

F-measure (%) comparison of different methods for all video sequences from the CD.net dataset. [The recall measure can be found in Appendix C.]. 

Category: Dynamic Background Category: Shadow 

Canoe Fall Fountain01 Fountain02 Overpass Back-Door Bungalows Bus-Station Copy-Machine People-in-Shade 

TV-RPCA 0.7465 0.6073 0.2264 0.7311 0.5623 0.8276 0.5229 0.7276 0.6084 0.6541 

TV1-RPCA 0.7309 0.6505 0.303 0.766 0.5946 0.8505 0.5249 0.6966 0.5953 0.6493 

OMGMF 0.6225 0.3731 0.1705 0.6836 0.4725 0.7712 0.5911 0.711 0.6169 0.8063 

RPCA 0.7108 0.544 0.2083 0.7292 0.5011 0.8377 0.5353 0.6895 0.5336 0.6654 

Tensor-RPCA 0.7107 0.3713 0.2228 0.7652 0.5041 0.73 0.5101 0.6372 0.7562 0.7772 

Lag-SPCP-QN 0.6378 0.3461 0.1504 0.6972 0.46 0.7294 0.599 0.7428 0.7377 0.8113 

MoG-RPCA 0.715 0.3612 0.1554 0.7038 0.4592 0.7539 0.576 0.7226 0.8182 0.7086 

GreGoDec 0.6491 0.3246 0.1531 0.725 0.4679 0.7327 0.5749 0.6926 0.7798 0.817 

RegL1-ALM 0.6363 0.3457 0.1505 0.6973 0.4618 0.7313 0.5876 0.7462 0.7383 0.8167 

MBRMF 0.6476 0.4174 0.1605 0.6939 0.4698 0.7683 0.5576 0.7005 0.7649 0.8032 

Proposed 0.8675 0.713 0.3936 0.8841 0.5819 0.8791 0.5939 0.813 0.7369 0.8529 

Fig. 8. Visual comparison of different methods for the Fall Video (second to fourth rows) and Fountain02 Video (last three rows). 
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proposed bootstrapping PMCA approach successfully captures both

forms of the scene, that is, the video frames in which the lights

are switched on and off. The video frames that are similar to any

of these background frames are treated as background. 

Results for CD.net dataset : The quantitative results for the dif-

ferent methods applied to the 10 videos from the CD.net dataset

are shown in Table 5 . The proposed method performs the best

for seven different videos and second best for two videos. The

proposed method performs more than 10% better than the sec-

ond best method for the Canoe and Fountain02 videos and 2.8-

9% better than the second best method for five different videos.

Fig. 8 (a larger version can be found in Appendix B (in the on-

line supplementary materials)) shows the detection results for the

Fall and Fountain02 videos. Similar to the case of the I2R dataset,

the proposed method outperforms the other methods. Its results

look like the ground truth labels. For the Fall video, many of the

methods incorrectly classify the wavering tree branches (third row

of Fig. 8 ) as foreground objects while the proposed method suc-

cessfully identifies them as part of the background. The success of

the proposed method again owes to its ability to capture the com-

plete patterns of the dynamic background, which is challenging
or many methods. For the Fall video, the wavering tree branches

ave a cyclic pattern. The proposed method effectively identifies

he video frames that have different forms of wavering branches.

owever, the proposed method does not perform as well as state-

f-the-art methods for the Copy-Machine video. The misclassified

ixels mainly belong to a person who spends a long time waiting

or the printout. The person is nearly static for over 2,0 0 0 of the

,400 frames of the video. As the proposed method adopts a sub-

ampling scheme, it easily treats the waiting person as background.

Speed comparison : Fig. 9 shows the average computation time

or different methods applied to 19 videos. The computation times

or each video can also be found in Appendix D (in the online sup-

lementary materials). GreGoDec and the proposed method have

he lowest computation cost, and their average computation times

re 3.77 s and 83.07 s, respectively. These are much lower than

ther methods such as MoG-RPCA and Lag-SPCP-QN, whose av-

rage computation times are 189.07 s and 189.97 s, respectively.

ethods that involve singular value decomposition in each itera-

ion of the optimization procedure, such as Tensor-RPCA, have a

uch larger computation time. The proposed method takes a much

horter computation time than the other methods for the following
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Fig. 9. Average computation time of different methods. 

Fig. 10. Boxplot of the F-measure for the 19 videos under the 100 repeated runs. [A larger version can be found in Appendix B.]. 
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easons. The most computationally expensive step of the proposed

ethod is performing PMCA for the subsamples. Section 3.2.2 ,

xplains that the fast exhaustive search must deal only with an

 × m matrix after some simplifications. We set the size of a

ubsample to 10 to deal with a 10 × 10 matrix. This is not de-

endent on video size. The computation demand is much smaller

han many current methods that compute the matrix multiplica-

ion many times, and the size of the matrix depends on the video

ize. 

Empirical sensitivity analysis of the random effect of the proposed

ethod : The proposed method adopts a bootstrapping method to

enerate a set of subsamples and produce the projection vectors.

e now conduct a sensitivity analysis for the random effect of the

roposed method. We apply the proposed method with exactly the

arameter setting described at the beginning of this section to the

9 videos and repeat these experiments 100 times. In each run, we

ompute the F-measure. The boxplot of these 19 videos is shown

n Fig. 10 . The 5-point summary for each video can be found in
ppendix E (in the online supplementary materials). For each box,

t shows the minimum, first quantile, median, third quantile, and

aximum of the F-measure for the 100 runs. A narrower vertical

ox means higher consistency across the 100 results. In most cases,

he proposed method produces highly consistent results. Moreover,

hen we compare the worst performance of the proposed method

i.e., the minimum F-measure of the 100 runs for each video) with

he second best methods as shown in Tables 4 and 5 , we see that

he proposed method is still the best in 12 different cases. When

e consider the first quantile results, we see that the proposed

ethod is the best in 16 different cases. These results show that

he superiority of the proposed method is relatively insensitive to

he random effect. 

Results for vessel extraction : We also compare the performance

f different PCA methods to the video sequence of X-ray coronary

ngiography [54 , 55] . The proposed method can detect the overall

essel structure more successfully. Because of the limited space, we

efer the details to Appendix F. 
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5. Conclusion and future work 

In this paper, we propose the use of a statistical bootstrap-

ping method with statistical mode formulation to solve the back-

ground subtraction problem. Theoretically, the proposed bootstrap-

ping method can capture almost any distribution without know-

ing the closed-form function. This differs from current methods

that model the dynamic background with complicated noise using

a closed-form probabilistic function. Moreover, we propose a new

PCA method, PMCA, that can find the statistical modes of each of

the subsamples. A statistical mode can capture the most repeti-

tive pattern of the video sequence. By combining all of the sta-

tistical modes, the complicated and dynamic backgrounds can be

captured. We test the proposed method using 19 different real-

world video sequences from 2 popular datasets: I2R and CD.net.

Our experiment results show that the proposed method performs

the best in 16 cases and second best in 2 cases. We also propose

a fast exhaustive search method to find the global optimal solu-

tion for the proposed PMCA. This fast method applies a simplifi-

cation procedure that makes the optimization procedure indepen-

dent of video size. This makes the proposed method more much

computationally traceable than many other methods. Moreover, we

perform sensitivity analysis for the random effect of the proposed

method. Experiments show that the worst performance of the pro-

posed method still performs better than state-of-the-art methods

in 12 different cases, while the first quantile results of the pro-

posed method are the best in 16 different cases. 

A possible future work of this research is to solve the online

background modelling problems. Current methodologies mainly

rely on the incremental update that computes one frame at a

time. Again, these methods usually assume the video sequence

follows specific distributions. The bootstrapping technique intro-

duced in this research work can model any distribution including

those distributions without any closed-form expression. The pro-

posed method should be a much more efficient method than the

current incremental approach. 
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