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Abstract
Co-clustering, often called biclustering for two-dimensional data, has found many applica-

tions, such as gene expression data analysis and text mining. Nowadays, a variety of multi-

dimensional arrays (tensors) frequently occur in data analysis tasks, and co-clustering tech-

niques play a key role in dealing with such datasets. Co-clusters represent coherent pat-

terns and exhibit important properties along all the modes. Development of robust co-

clustering techniques is important for the detection and analysis of these patterns. In this

paper, a co-clustering method based on hyperplane detection in singular vector spaces

(HDSVS) is proposed. Specifically in this method, higher-order singular value decomposi-

tion (HOSVD) transforms a tensor into a core part and a singular vector matrix along each

mode, whose row vectors can be clustered by a linear grouping algorithm (LGA). Mean-

while, hyperplanar patterns are extracted and successfully supported the identification of

multi-dimensional co-clusters. To validateHDSVS, a number of synthetic and biological ten-

sors were adopted. The synthetic tensors attested a favorable performance of this algorithm

on noisy or overlapped data. Experiments with gene expression data and lineage data of

embryonic cells further verified the reliability of HDSVS to practical problems. Moreover, the

detected co-clusters are well consistent with important genetic pathways and gene ontology

annotations. Finally, a series of comparisons between HDSVS and state-of-the-art methods

on synthetic tensors and a yeast gene expression tensor were implemented, verifying the

robust and stable performance of our method.

Introduction
Clustering analysis has become a fundamental tool in statistics, machine learning and signal
processing [1]. A number of clustering algorithms have been developed, with the general idea
of seeking groups among different objects in a full feature space. However, this process has sev-
eral limitations, such as the adoption of a global-feature similarity among objects and the
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selection of a representative for each group. In contrast, many applications detect sub-matrices,
which manifest coherent patterns among the rows or columns, in the object-feature matrix.
For example, identification of genes that are co-expressed under certain conditions in microar-
ray experiments and text mining of document groups that are characterized by word groups
are two representatives of this type of study [2, 3]. To assist this sub-matrix analysis, a series of
efficient approaches, such as sub-dimensional clustering, linear grouping and co-clustering,
have been developed [2, 4–10].

Inspired by the concept of direct clustering [11], biclustering (co-clustering) plays an impor-
tant role in the analysis of gene expression data [2]. This technique simultaneously clusters the
rows (genes) and columns (experimental conditions) of the gene-condition matrix. Conse-
quently, a subset of rows exhibiting significant coherence within a subset of columns in the
matrix can be extracted. These coherent rows and columns are accordingly regarded as a
bicluster, which corresponds to a specific coherent pattern. Commonly-studied biclusters in
gene expression data present patterns with constant value, coherent value, and coherent evolu-
tions [12]. Practically, biclustering is quite challenging, especially for large-scale data sets. Com-
prehensive reviews on this topic can be found in [12–17].

Cheng and Church developed an efficient node-detection algorithm (CC) to find valuable
submatrices in yeast or human experssion data, based on mean squared residue scores [2].
Later, co-clustering in a document-word matrix was novelly transferred into a bipartite graph
partitioning problem by Dhillon [18], and a spectral algorithm (BSGP) was proposed to give a
reasonable partitioning solution. Bergmann et al. defined a transcription module in gene
expression data by iteratively searching for co-clusters until a threshold was reached (ISA)
[19]. ISA was also reported to perform well when applied to large-scale data. Subsequently, a
simple binary reference model was provided for comparing and validating biclustering meth-
ods [20], and meanwhile a fast divide-and-conquer algorithm (BiMax: http://www.tik.ee.ethz.
ch/sop/bimax) was proposed. As another classic co-clustering method, FABIA (Factor Analysis
for Bicluster Acquisition) is a multiplicative model depending on linear dependencies between
gene expression and experimental conditions [21].

Nowadays, multi-dimensional arrays (tensors), such as color images ([row, column, color])
[22, 23] and microarray data ([gene, condition, time]) [24, 25], frequently occur in clustering-
related studies, demanding effective techniques that can deal with such data sets and identify
useful co-clusters in them [26–30]. Banerjee et al. proposed a tensor co-clustering method by
describing all the known relations between the different entity classes with a relation graph
model [27]. Another method to detect co-clusters in tensors is based on multilinear decompo-
sition with sparse latent factors [29]. In our work, the multi-dimensional co-clustering of a
high-order tensor is accomplished by the conjunction of higher-order singular value decompo-
sition (HOSVD) [23] and linear grouping algorithm (LGA) [5, 31]. Huang et al. has also
employed HOSVD [23], toghther with the K-Means clustering, in their co-cluster method.
However, the K-Means algorithm could only form clusters around “object” centers in the sin-
gular vector spaces, which is mainly related to constant biclusters. On the contrary, LGA could
find linear structures (lines, planes and hyperplanes) in the singular vector spaces. These linear
structures correspond to other types of co-clusters (constant-row/column, additive and mulit-
plicative co-clusters) in addition to constant ones in the original data. Firstly in our method,
generalized from the SVD of a matrix, a truncated HOSVD is implemented on an Nth-order
tensor, resulting in a core tensor and a series of singular vector matrices along each mode. Sec-
ondly, LGA is subsequently applied to reveal the linear patterns embedded in singular vector
matrices, with biclusters along each mode detected. Finally, through combining the detected
linear structures of all the modes and defining a scoring function, we can successfully identify
significant co-clusters in the tensor. To validate our method and compare it with existing ones,
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multiple synthetic and biological tensors are used, and the detected significant co-clusters are
analyzed according to genetic pathways and gene ontology (GO) annotations [32] to attest the
biological significance of these co-clusters [33].

Methods

Notations and Preliminaries
An Nth-order (N-mode) tensor AA ¼ fai1 i2...iN ; ik ¼ 1; . . . ; Ikg can be defined as a multi-dimen-

sional array, where N is the number of dimensions [23]. Here we adopt a boldface and Euler-
script letter AA to denote a tensor, with its entry notated as ai1i2. . .iN. Accordingly, a column vec-
tor can be denoted using a boldface and lowercase letter, e.g. a, with its ith entry notated as ai;
and a matrix is denoted by a boldface and uppercase letter, e.g. A, with its entry in the ith row
and jth column denoted as aij.

Further, the ith row and jth column of A can be notated as ai: and a:j, respectively. Addition-
ally, fibers and slices of AA can be defined. For example, the column-, row- and tube-fibers of a
3-mode tensorAA 2 RI1�I2�I3 are denoted as a:jk, ai:k, and aij:, respectively. The horizontal, lateral
and frontal slices of this tensor are notated as Ai::, A:j:, and A:: k, respectively.

The process of transforming a tensor into a 2D matrix is called unfolding or flattening. The
mode-n unfolded matrix A(n) of a tensor AA 2 RI1�I2�...�IN is a matrix of size In � ðQ

k 6¼n

IkÞ, with
its mode-n fibers reduced to the columns [34].

Unfolded matrices play an important role in the product of a tensor and a matrix. Similar to
the product of two 2D matrices, the mode-n product of a tensor AA 2 RI1�I2�...�IN with a matrix
U 2 RJ�In can be denoted as AA�nU, which is a tensor (size I1 × . . . × In−1 × J × In+1 × . . . × IN)
composed of the following entries,

ðAA�nUÞi1...in�1 jinþ1...iN
¼

XIn
in¼1

ai1...in�1 ininþ1...iN
ujin

ð1Þ

This can also be described by a matrix product in Eq (2), using the unfolded matrices.

y ¼ AA�nU , YðnÞ ¼ UAðnÞ ð2Þ

Biclustering in Matrices
Biclusters in Matrices. In a data matrix A, a bicluster is a sub-matrix of A and represents

a coherent pattern [12]. Specifically, we notate a bicluster as AIJ, where I = {i1, i2, . . ., is} stands
for a subset of rows and J = {j1, j2, . . ., jt} is a subset of columns. Based on AIJ, we can further
define several types of generally-discussed biclusters:

1. constant biclusters, i.e. {aij = μ j i 2 I, j 2 J};

2. constant-row or constant-column biclusters, i.e. faTiJ ¼ mi1J j i 2 Ig or {aIj = μj 1I j j 2 J}

where 1J or 1I is a column vector of ones;

3. additive-row or additive-column biclusters, i.e. faTiJ ¼ mi1J þ aTkJ j i; k 2 Ig or {aIj = μj 1I +

aIk j j, k 2 J};

4. multiplicative-row or multiplicative-column biclusters, i.e. faTiJ ¼ mia
T
kJ j i; k 2 Ig or

{aIj = μj aIk j j, k 2 J}.
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Let us consider the analysis of gene expression data ([gene, experimental condition]) as an
example. Our aim is to identify gene groups with similar behaviors or functions, such as a
group of genes that are highly correlated under a group of experimental conditions [2, 12, 35].
In this regard, a constant bicluster means that a group of genes have the same expression level
under a group of conditions, thus exhibiting certain kinds of homogeneity [35]. Similarly, con-
stant-row, constant-colonm, addtive and multiplicative biclusters can also reveal genes with
related behaviours or functions, which can be coordinately investigated and targeted in gene
regulation [6, 12]. Specifically, a constant-row bicluster means that each gene in a group has
the same expression level under all conditions in a group, but different genes may have differ-
ent expression levels. A constant-column bicluster means that all genes in a group have the
same expression level under each condition in a group, but a gene may have different expres-
sion levels for different conditions. In an additive bicluster, expression levels of all genes in a
group under one condition is higher or lower by a constant than those under another condi-
tion. In a multiplicative bicluster, expression levels of all genes in a group under one condition
is a multiple of those under another condition.

Most biclustering techniques permutate the original matrix and optimize a scoring function.
Commonly-used scoring functions include the sum of squares [11] in Eq (3) and the mean
squared residue score [2] in Eq (4),

SSQ ¼
X
i2I;j2J

ðaij � �AIJÞ2 ð3Þ

HðI; JÞ ¼ 1

jIjjJj
X
i2I;j2J

ðaij � �a iJ � �aIj þ �AIJÞ2 ð4Þ

where �AIJ is the mean of sub-matrix AIJ, and �aiJ and �aIj are the means of row aiJ and column

aIj, respectively. AIJ is defined as a δ-bicluster if H(I, J)� δ, where δ(δ> 0) is a pre-specified
residue score threshold value.

Unfortunately, H(I, J) can be used only to detect biclusters of types (a), (b) and (c), but not
type (d). Therefore, a more general scoring function was proposed [36] for a thorough biclus-
ter-search. This function S(I, J), as expressed in Eq (5), is derived from Pearson’s correlation:

SðI; JÞ ¼ mini2I;j2JðSIj; SiJÞ ð5Þ

where SIj ¼ 1� 1
jJj�1

P
j 6¼k2J

jrðaIj; aIkÞj and SiJ ¼ 1� 1
jIj�1

P
i6¼k2I

jrðaiJ; akJÞj. rðx; yÞ ¼P
ðx��xÞðy��yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðx��xÞ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðy��yÞ2
p is Pearson’s correlation between two vectors x and y. Normally, a lower S

(I, J) value represents a stronger coherence among the involved rows or columns [36]. Similarly
as above, we can define a δ-bicluster if S(I, J)� δ, where δ> 0.

Biclustering Based on Singular Value Decomposition (SVD) and Clustering in Singular
Vector Matrices. In biclustering analysis, SVD-based methods play an important role and
have been broadly applied to detect significant biclusters. Representative methods include
sparse SVD (SSVD), regularized SVD (RSVD), robust regularized SVD (RobRSVD), nonnega-
tive matrix factorization (NMF) and nonsmooth-NMF (nsNMF) [36–39].

Let A be a matrix of size N ×M, and its SVD can be defined as follows,

A ¼ USVT ¼
Xr

i¼1

siuiv
T
i ð6Þ
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where r is the rank of A, U = [u1 u2 . . . ur] is an N × rmatrix of left orthonormal singular vec-
tors, V = [v1 v2 . . . vr] is anM × rmatrix of right orthonormal singular vectors, and
S = diag(σ1 σ2 . . . σr) is an r × r diagonal matrix with positive singular values
(σ1 � σ2 � . . .� σr).

In Eq (6), siuiv
T
i is a rank-one matrix that is called an SVD layer. Normally, the SVD layers

corresponding to large σk values are regarded as effective signals, while the rest are considered
as noise [36]. Based on effective SVD layers, a rank-l (l< r) approximation of A can be derived
by minimizing the squared Frobenius norm:

A � AðlÞ ¼
Xl

i¼1

siuiv
T
i

¼ arg minrankðA�Þ¼l k A� A� k2F
¼ arg minrankðA�Þ¼ltrfðA� A�ÞðA� A�ÞTg

ð7Þ

In order to develop SVD-based techniques for co-cluster analysis of high-order tensors, let
us first study the properties of biclusters in 2D singular vector spaces. For simplicity, merely
coherent patterns along columns are considered here.

Proposition 1: If Ac is a bicluster with size n × d, then rank(Ac)� 2.
Proof: First, we can rewrite Ac as follows,

Ac ¼ ½ac:1 ac:2 . . . ac:d� ð8Þ

If Ac corresponds to a constant or constant-column bicluster, then rank(Ac)� 1. Otherwise,
if Ac corresponds to a multiplicative-column bicluster, then Ac can be formulated as Eq (9),

Ac ¼ ½ac:1 k2a
c
:1 . . . kda

c
:1� ð9Þ

As well, here the rank of Ac is no more than one (rank(Ac)� 1), since k2a
c
:1; . . . ; kda

c
:1 are lin-

early dependent on ac:1.
At last, if Ac corresponds to an additive bicluster, then the following equation can be

derived,

Ac ¼ ½ac:1 ac:1 þ b21n . . . ac:1 þ bd1n� ð10Þ

Here, at most two vectors, such as ac:1 and a
c
:1 þ b21n, are linearly independent. Therefore, rank

(Ac)� 2.
Proposition 2: Assume Ac with size s × t is a bicluster. If Ac ¼ UcScV

T
c , where Uc and Vc are

the left and right singular vector matrices respectively of Ac and Sc ¼ diagðsc
1; s

c
2; . . . ; s

c
sÞ con-

tains the singular values of Ac with sc
1 � sc

2 � . . . � sc
s , then each column of Ac can be repre-

sented as a linear combination of first two columns, uc
1 and u

c
2, of Uc, and each row of Ac can be

represented as a linear combination of first two columns, vc1 and v
c
2, of Vc.
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Proof: According to Proposition 1, the rank of Ac is at most 2. Because sc
m ¼ 0 form> 2,

Ac ¼ UcScV
T
c can be rewritten as

Ac ¼ UcScV
T
c

¼ uc
1 uc

2½ �
sc
1 0

0 sc
2

" # ðvc1ÞT

ðvc2ÞT

2
4

3
5

¼ uc
1 uc

2½ �
sc
1 0

0 sc
2

" #
vc11 vc12 	 	 	 vc1d

vc21 vc22 	 	 	 vc2d

" #

¼ sc
1v

c
11u

c
1 þ sc

2v
c
21u

c
2 sc

1v
c
12u

c
1 þ sc

2v
c
22u

c
2 	 	 	 sc

1v
c
1du

c
1 þ sc

2v
c
2du

c
2½ �

ð11Þ

Let aj1 ¼ sc
1v

c
1j and aj2 ¼ sc

2v
c
2j, then the j-th column of Ac is

acj ¼ aj1u
c
1 þ aj2u

c
2 ð12Þ

That is,

aj1u
c
11 þ aj2u

c
12 ¼ ac1j

aj1u
c
21 þ aj2u

c
22 ¼ ac2j

..

.

aj1u
c
s1 þ aj2u

c
s2 ¼ acsj

8>>>>>><
>>>>>>:

ð13Þ

Thus, each column of Ac can be represented as a linear combination of first two columns, uc
1

and uc
2, of Uc. Geometrically, Eqs (12) and (13) mean that points ðuc

m1; u
c
m2Þðm ¼ 1; 2; . . . ; sÞ

are distributed on a line.
Similarly, we can obtain

aci ¼ bi1v
c
1 þ bi2v

c
2 ð14Þ

and

bi1v
c
11 þ bi2v

c
12 ¼ aci1

bi1v
c
21 þ bi2v

c
22 ¼ aci2

..

.

bi1v
c
t1 þ bi2v

c
t2 ¼ acit

8>>>>>><
>>>>>>:

ð15Þ

Thus, each row of Ac can be represented as a linear combination of first two columns, vc1 and
vc2, of Vc. Geometrically, Eqs (14) and (15) mean that points ðvcm1; v

c
m2Þðm ¼ 1; 2; . . . ; tÞ are dis-

tributed on a line.
Proposition 3: Assume Ac1 and Ac2 with sizes s1 × t and s2 × t are two different biclusters,

where s1+s2 = s. Let Ac ¼
Ac1

Ac2

� �
. If Ac ¼ UcScV

T
c , where Uc and Vc are the left and right singu-

lar vectors matrices respectively of Ac and Sc ¼ diagðsc
1; s

c
2; . . . ; s

c
sÞ contains the singular val-

ues of Ac with sc
1 � sc

2 � . . . � sc
s , then each column of Ac1 can be represented as a linear

combination of s1 rows of first four columns, uc1
1 , u

c1
2 , u

c1
3 , u

c1
4 , of Uc, each column of Ac2 can be

represented as another linear combination of rows s1 + 1 to s1 + s2 of first four columns, uc2
1 ,
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uc2
2 , u

c2
3 , u

c2
4 , of Uc, and each row of Ac can be represented as a linear combination of first four

columns, vc1, v
c
2, v

c
3, v

c
4, of Vc.

Proof: According to Proposition 1, the rank of Ac1 is at most 2, and so is the rank of Ac2.

Thus, rank(Ac)� 4. Let Uc ¼
Uc1

Uc2

� �
, where Uc1 represents the first s1 rows and Uc2 the

remaining s2 rows of Uc. Because sc
m ¼ 0 form> 4, Ac ¼ UcScV

T
c can be rewritten as

Ac ¼
Ac1

Ac2

2
4

3
5

¼
uc1
1 uc1

2 uc1
3 uc1

4½ �

uc2
1 uc2

2 uc2
3 uc2

4½ �

2
4

3
5

sc
1

sc
2

sc
3

sc
4

2
666666664

3
777777775

ðvc1ÞT

ðvc2ÞT

ðvc3ÞT

ðvc4ÞT

2
666666664

3
777777775

ð16Þ

where uc1
m (m = 1, 2, 3, 4) are the first four columns of Uc1 and uc2

m (m = 1, 2, 3, 4) are the first
four columns of Uc2. Similar to the proof for Proposition 2, we can obtain

ac1j ¼ ac1j1u
c1
1 þ ac1j2u

c1
2 þ ac1j3u

c1
3 þ ac1j4u

c1
4 ð17Þ

ac2j ¼ ac2j1u
c2
1 þ ac2j2u

c2
2 þ ac2j3u

c2
3 þ ac2j4u

c2
4 ð18Þ

where ac1j represents the j-th column of Ac1 or the first s1 elements in the j-th column of Ac, and

ac2j represents the j-th column of Ac2 or the remaining s2 elements in the j-th column of Ac.

Geometrically, Eq (17) means that points ðuc
m1; u

c
m2; u

c
m3; u

c
m4Þ (m = 1, 2, 3, . . ., s1) are distributed

on a hyperplane, and that points ðuc
m1; u

c
m2; u

c
m3; u

c
m4Þ (m = s1 + 1, s1 + 2, s1 + 3, . . ., s1 + s2) are

distributed on another hyperplane. Similarly, we can show that the points ðvcm1; v
c
m2; v

c
m3; v

c
m4Þ

(m = 1, 2, . . ., t) are also distributed on a hyperplane.
In practical applications, biclusters are embedded in a large matrix with irrelevant elements.

Additionally, the biclusters themselves can have noise. Three examples are shown below:

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

XAAXXXAXXX XAXAXXAXXX XAXXXAXXXA

XXXXXXXXXX XAXAXXAXXX XXXXXXXXXX

XXXXXXXXXX XXXXXXXXXX XAXXXAXXXA

XAAXXXAXXX XAXAXXAXXX XAXXXAXXXA

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XBXBXXBXXX XXBXBBXXXX

XAAXXXAXXX XXXXXXXXXX XXBXBBXXXX

XXXXXXXXXX XBXBXXBXXX XXXXXXXXXX

XXXXXXXXXX XBXBXXBXXX XXBXBBXXXX

Matrix1 Matrix2 Matrix3

Identifying Co-Clusters in Tensors Based on Hyperplane Detection

PLOS ONE | DOI:10.1371/journal.pone.0162293 September 6, 2016 7 / 27



In these matrices, “X” represents entries of irrelevant elements, and “A” and “B” represent
the entries of two biclusters A and B respectively. The actual values at the location marked by
“X” can be different, and they are background noise. The values at the locations marked by “A”
and “B” should form bicluster patterns as described in Section “Biclusters in Matrices”.

Due to noise, the rank of Matrix 1 can be greater than 2. We can remove small singular val-
ues using a method to be discussed in Section “HOSVD”. Assume that we still retain 2 singular
values, then Eqs (12) to (15) are only approximations for rows 2, 5 and 8. Remember that our
task in biclustering is to find these row indices (and column indices 2, 3 and 7). That is, we do
not know beforehand rows 2, 5 and 8 contain a bicluster and we need to identify them. Assume
that we take SVD of Matrix 1, then from the left singular vector matrix U, points (um1, um2)
(m = 2, 5, 8) should form a line approximately according to Eqs (12) and (13), while points
(um1, um2) (m 6¼ 2, 5, 8) will be distributed randomly and do not satisfy these equations. Our
task now is to detect the line from all points (um1, um2) (1�m� 10). Once the line is detected,
we can then determine which points are on the line. The row indices of these points correspond
to the locations of the bicluster. Similarly, we can identify relevant columns of the bicluster by
detecting lines using the right singular vector matrix V. To identify biclusters in Matrices 2 and
3, we need to find hyperplanes in singular vector spaces. The lines and hyperplanes can be
detected using the linear grouping algorithm (LGA) to be discussed in Section “Linear Group-
ing Algorithm (LGA)”.

Identification of Co-clusters in High-order Tensors
Co-clusters in High-order Tensors. The hyperplane model in singular vector spaces can

be extended to the analysis of higher-order tensor data. For example, a co-cluster (represented

by a sub-tensor AA IJK 2 RI�J�K) in a 3-mode (3D) tensor AA I1I2I3
2 RI1�I2�I3), where {I 2 I1,

J 2 I2, K 2 I3}, can be similarly defined as in the 2D case. This definition involves the pre-
defined fibers and slices in a 3D tensor. Now we use constant co-clusters as examples,

1. AA IJK 2 RI�J�K corresponds to a constant co-cluster if {aijk = μ j i 2 I, j 2 J, k 2 K};

2. a constant-column-fiber co-cluster can be expressed as {aIjk = μjk 1I j j 2 J, k 2 K};

3. a constant-horizontal-slice co-cluster can be defined as {AiJK = μi 1JK j i 2 I};

Here 1I or 1JK is a vector or matrix of ones. Accordingly, additive and multiplicative co-clusters
can be also defined.

To evaluate the significance of co-clusters in high-order tensors, a scoring function
generalized from that for matrices in Eq (5) can be used. Let SI1. . .in. . .IN represent the average of
SI1in, . . ., SIn−1in, Sin In+1, . . ., SinIN, then we can define the scoring function as

SðI1; I2; . . . ; INÞ
¼ mini12I1 ;i22I2 ;...;iN2IN ðSi1I2...IN ; SI1 i2...IN ; SI1I2...iN Þ

ð19Þ

Similarly, a lower score indicates a higher significance. A δ-co-cluster can be further defined if
S(I1, I2, . . ., IN)� δ (δ> 0). In particular, we name such a co-cluster in a 3D tensor as a δ-
tricluster.

HOSVD. Similar to SVD, HOSVD that decomposes a tensor into a core tensor and a sin-
gular vector matrix along each mode is employed in our method, to extract co-clusters in high-
order tensors [23, 40, 41].

The HOSVD of an N-mode tensor AA 2 RI1�I2�...�IN can be expressed as follows,

AA ¼ TT �1U
ð1Þ . . .�NU

ðNÞ ð20Þ
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where UðnÞ 2 RIn�rn ðn ¼ 1; . . . ;NÞ is a factor (singular vector) matrix, and TT 2 Rr1�r2�...�rN is
the core tensor. The SVD of a matrix A in Eq (6) can be formulated in a similar format with
TT ¼ S 2 RI1�I2 , as a special case of Eq (20).

A ¼ USVT ¼ S�1U�2V ð21Þ

On the other hand, HOSVD can be expressed as a matrix format, using the unfolded matri-
ces along each mode,

AðnÞ ¼ UðnÞSðnÞðVðnÞÞT ; n ¼ 1; . . . ;N ð22Þ

That is, we obtain a matrix A(n) of size In × I1I2	 	 	In−1In+1	 	 	IN for mode n, and U(n) is the left
singular vector matrix of A(n). When the tensor AA is unfolded to a matrix A(n), a co-cluster in
AA will be unfolded to a bicluster in A(n). From U(n), we can find the row indices of A(n) that
contain a bicluster, according to Propositions 1 to 3. These row indices correspond to the loca-
tions in the tensor along mode n. By combining the row indices of biclusters in all unfolded
matrices A(n) (n = 1, . . ., N), we can then find the co-cluster in an N-dimensional space or N-
mode tensor AA . Now the major task is to find hyperplanes for each singular vector matrix U(n).
That is, the problem of detecting co-clusters in a multi-dimensional space has been effectively
converted to the detection of biclusters in singular vector spaces.

For a tensor AA 2 RI1�I2�...�IN , the n-rank of AA ðranknðAA ÞÞ is defined as the column rank of
A(n). Let rn ¼ ranknðAA Þ, (n = 1, . . ., N), then AA has the rank of (r1, r2, . . ., rN). Inspired by the
rank-l (l< r) SVD approximation of matrix A in Eq (7), the singular-value truncation also can
be used to reveal effective signals and reduce noises in a tensor [23]. Accordingly, a portion of
singular values S(n) in Eq (22) will be adopted. Thus, we can define a truncated HOSVD
depending on the matrix format as follows, for a tensor AA , its decomposition of rank-
ð~r1;~r2; . . . ;~rNÞ, with ~rn < rn ¼ ranknðAA Þ for at least one mode (n), is called a truncated
HOSVD [40]. This concept for a 3-mode tensor is shown in Fig 1.

The optimal rank ð~r1;~r2; . . . ;~rNÞ of a tensor can be determined from a compromise
between accuracy and number of singular values used. Because we use the unfolded matrices to

Fig 1. The truncated HOSVD of a 3-mode tensor. Part a shows the original tensorAA , and Part b displays the concept of
a truncated HOSVD ofAA .

doi:10.1371/journal.pone.0162293.g001
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determine the row indices of co-clusters, we find the optimal rank ~rn of each unfolded matrix

A(n) and the optimal rank of the tensor is then (~r1, ~r2, . . ., ~rN). The accuracy of a matrix ~A is

defined using the Frebenius norm as acc ¼ kA�~Ak2F
kAk2

F
, where ~A is reconstructed from SVD after

truncation of mall singular values. The relative error is defined as 1−acc. Fig 2 presents the rela-

tive error curves for two examples A and ~A with different numbers of singular values used. The
two 2D synthetic matrices of size 100 × 100, which are similar to Matrix 1 and Matrix 2 dis-
cussed below Proposition 3, are embedded with one and two additive biclusters of size
10 × 10, respectively. Each additive bicluster is produced from a seed column of random num-
bers distributed in a normal distribution N(0, z2) (z = 6 for low nosie level and z = 1.25 for high
noise level) and each of the other 9 columns is produced by adding to the seed column a ran-
dom number with the standard normal distribution. The background of each matrix also con-
tains random numbers with the standard normal distribution. As shown in Fig 2, the corner

Fig 2. Derivation of the optimal rank. According to the relative error curve with different number of singular values used,
the optimal rank of the Matrix 1 and Matrix 2 are 2 and 4, respectively.

doi:10.1371/journal.pone.0162293.g002
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point corresponds to the optimal rank (2 and 4) of the two 2D synthetic matrices. As noise
increases, the relative error curve becomes smooth and the corner point disappears. Through
many simulation experiments, we find that a threshold at 20% relative error can be used to find
the optimal rank value.

Linear Grouping Algorithm (LGA). As discussed in Section “Biclustering Based on Sin-
gular Value Decomposition (SVD) and Clustering in Singular Vector Matrices”, bicluster
searching in a 2D matrix A can be transformed into a hyperplane detection problem in the sin-
gular vector matrices produced by SVD, which can be generalized to a high-order tensor AA . In
detail, a co-cluster in AA can be represented by the biclusters along each mode, and a series of
linear relations among the HOSVD-generated singular vectors can be accordingly inferred as
below,

a11u
ð1Þc
1 þ a12u

ð1Þc
2 þ . . .þ a1~r1

uð1Þc
~r1

þ b1 ¼ 0

a21u
ð2Þc
1 þ a22u

ð2Þc
2 þ . . .þ a2~r2

uð2Þc
~r2

þ b2 ¼ 0

..

.

aN1u
ðNÞc
1 þ aN2u

ðNÞc
2 þ . . .þ aN~rN

uðNÞc
~rN

þ bN ¼ 0

8>>>>>>><
>>>>>>>:

ð23Þ

where the co-cluster is decomposed as AA c ¼ TT c�1
~Uð1Þc�2

~Uð2Þc . . .�N
~UðNÞc.

Eq (23) represents a group of hyperplanar (linear) relations in a multi-dimensional space,
which can be named hyperplanar co-clusters. Importantly, similar to the 2D case, these hyper-
planar relations shed light on the multi-dimensional co-cluster identification in tensors [5, 13,
36, 37, 39].

Specifically in our work, the linear grouping algorithm (LGA) was adopted to reveal the lin-
ear relations embedded in the singular vector matrices, which were generated by a truncated
HOSVD. This model follows the linear patterns among the involved vectors [5]. Originally,
LGA clustered data points by fitting a mixture of linear regression models [42], and later an
evolved model based on an orthogonal regression approach was proposed, which provided
favorable performances in applications with outliers [5]. Recently, this model has been
improved to a robust linear clustering method [43]. A simple procedure of LGA can be
described as Algorithm 1.

Algorithm 1 Procedure of LGA for a group of vectors UIn�~rn

procedure LGA ðUIn�~rn
¼ ½u1;u2; . . . ;uIn

�T ;KÞ
Step 1: Scale the variables through dividing them by the standard

deviation,
~UIn�~rn

¼ ½~u1; ~u2; . . . ; ~uIn
�T,

where

~ui ¼
ui

si

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d � 1
ðui � �uiÞðui � �uiÞT

r
i ¼ 1; 2; . . . ;In

8>>>><
>>>>:

Step 2: Select K random sub-samples of size ~rn,
G0 ¼ fg01; g02; . . . ; g0Kg

where
g0k ¼ ½~u0

k1; ~u
0
k2; . . . ; ~u

0
k~rn

�
~u0
ki 2 ~UIn�~rn

(

Step 3: Loop
for j = 0, 1, . . ., J do
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1. Initialize K orthogonal regression hyperplanesHj ¼ fhj
1 ; h

j
2 ; . . . ; h

j
Kg by

fitting the samples in Gj ¼ fgj1 ; gj2 ; . . . ; gjKg, resulting in

hj
k ¼ fðâk; b̂kÞ j âT

k~u
j
ki � b̂k ¼ 0; ~uj

ki 2 gjk; k âk k¼ 1;i ¼ 1; 2; . . . ; ~rng ðk ¼ 1; 2; . . . ;KÞ.
2. Compute the distance between each hyperplane hj

k and each sample ~ui,

dj
ik ¼ distanceð~ui; h

j
kÞ ¼ jâT

k~ui � b̂kj, where
k ¼ 1; 2; . . . ;K

i ¼ 1; 2; . . . ;In

�
.

3. Form K groups for ~ui, Gjþ1 ¼ fgjþ1
1 ; gjþ1

2 ; . . . ; gjþ1
K g, where ~ui 2 gjþ1

k if

k ¼ argminkðdj
ikÞ.

4. Compute the evaluation function for each iteration, Dj ¼ PK
k¼1

P
~ui2gjþ1

k

dj
ik.

end for Dj reaches the minimum Dopt.
Return Gopt

end procedure

The purpose of applying the LGA algorithm is to find the row indices of each co-cluster
along each mode of a tensor from the corresponding unfolded matrix, as discussed above. This
is done by detecting hyperplanes formed by some but not all points (um1, um2, . . ., umd) (m = 1,
2, . . ., In) in the left singular vector space along each mode. Initially, we choose random points
to compute the coefficients of hyperplanes. Then we assign each point to the closest hyper-
plane. This process is repeated to improve the result. The procedure is similar to the K-means
algorithms. The difference is that we deal with hyperplanes while the K-means algorithm
involves cluster centers only. We consider a point is on a hyperplane if its distance to the
hyperplane is smaller than a pre-specified threshold, which is determined experimentally.
From a set of points on the same hyperplane, we can then find the row indices of a correspond-
ing co-cluster. All co-clusters detected from the hyperplanes are subject to an evaluation and
elimination procedure discussed below.

Multi-dimensional Co-clustering in Tensors Based on HOSVD and LGA. HOSVD
decomposes an N-mode tensor AA into a core tensor and singular vector matrices U(n) along all
modes. Hyperplanes embedded in each truncated singular vector matrix were revealed by
LGA, based on the natural linear patterns among the vectors. Through combining the products
along each mode, the high-order co-clusters in this tensor were successfully identified. To fur-
ther filter such co-clusters, those having a score (Eq (20)) smaller than or equal to δ, namely S
(I1, I2, . . ., IN)� δ (δ> 0), were extracted and regarded as more significant. A co-cluster is
eliminated if it is a part of or identical to another co-cluster. The block diagram of our co-clus-
tering method based on hyperplane detection in singular vector spaces (HDSVS) is shown in
Fig 3.

Experiment Results
To verifyHDSVS, several data sets, including multiple synthetic and biological tensors, were
used in the experiments. Two synthetic tensors were constructed with increased noise and
overlapped degree, to evaluate the effects of noise and overlapping complexity to the co-cluster
identification. Two biological tensors were from gene expression data from 12 multiple sclerosis
patients under an IFN-β therapy [44, 45] and spatial/temporal lineage tracing data of embryonic
cells in a crowd of Caenorhabditis elegans [34, 46], and were used to test the performance of our
method in practical problems.HDSVS can be successfully applied to co-clustering in high-
order tensors. However, because most existing methods are designed for 2D data, we con-
ducted comparisons ofHDSVS with other methods using only matrices or second-order ten-
sors in Section “Experiment Comparisons with Other Methods Using 2D Synthetic Data and
2D Yeast Gene Expression Data”. Specifically, 2D synthetic tensors generated based on well-
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published principles [47] and a 2D yeast gene expression tensor [20] were adopted to compare
the performance and robustness of our method with those of existing methods.

Evaluation of Noise and Overlapping Effects in Co-cluster Identification
Using Synthetic Tensors
Amatching scoring, generated by the Jaccard coefficient [14], was first defined to evaluate the
agreement between a detected co-cluster and the true one. Let CL1 ¼ ðG1

1;G
1
2; . . . ;G

1
NÞ and

CL2 ¼ ðG2
1;G

2
2; . . . ;G

2
NÞ be two co-clusters in a tensor AA 2 RI1�I2�...�IN , where Gj

i 
 Ii ði ¼
1; 2; . . . ;N; j ¼ 1; 2Þ is a subset of the ith dimension of AA . The matching score can be
expressed as follows,

MSðCL1;CL2Þ ¼ maxCL1maxCL2

XN
i¼1

jG1
i \ G2

i j
XN
i¼1

jG1
i [ G2

i j
ð24Þ

Further, we denote a true co-cluster as CLtrue and a detected one as δ-CL, then a larger value of
MS(CLtrue, δ-CL) represents a better detection. Based on such matching scores, effects of noise
and overlapping complexity on the co-cluster identification will be discussed, using the two
synthetic tensors.

Fig 3. Block diagram of our co-clustering method based on hyperplane detection in singular vector spaces
(HDSVS). In the left-hand side, the flow for a truncated HOSVD is shown. The LGAmodule is presented in the middle. The
ranking procedure based on a scoring function, for revealing significant co-clusters (δ-CLs) in a tensor, is listed in the right-
hand side.

doi:10.1371/journal.pone.0162293.g003
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In the first case, four types of CLtrue (10 × 10 × 10), constant, constant-column-fiber, addi-
tive-fiber and mulitplicative-fiber co-clusters, were embedded into a 3D tensor AA 1 (100 × 100
× 100), whose background was generated based on the standard normal distribution. The four
types of co-clusters were generated as follows:

1. constant co-cluster, i.e. {aijk = 2 j i 2 I, j 2 J, k 2 K};

2. constant-column-fiber co-cluster, i.e. {aIjk = μjk1I j j 2 J, k 2 K}, where μjk was randomly
selected from U(−2, 2);

3. additive-fiber co-cluster, i.e. {aIjk = μjk 1I + aI(1) j j 2 J, k 2 K}, where aI(1) is the first fiber of
the co-cluster, μjk and each value of aI(1) were randomly selected from U(−2, 2);

4. multiplicative-fiber co-cluster, i.e. {aIjk = μjk aI(1) j j 2 J, k 2 K}, where aI(1) is the first fiber
of the co-cluster, where μjk and each value of aI(1) were randomly selected from U(−2, 2);

Then Gaussian white noise with different signal-to-noise ratios (SNRs) was generated to
degrade CLtrue. The proposedHDSVS algorithm and PARAFAC with sparse latent factors [29]
was then applied to the noisy tensors, after whichMS(CLtrue, δ-CL) was calculated. The experi-
ment was performed 100 times for each method and the matching scores from all experiments
were averaged to obtain the final score for comparison. The matching scores corresponding to
various SNRs are summarized in Fig 4a. For the constant co-cluster, the matching score of
HDSVS and PARAFAC are 1 for all SNRs. PARAFAC performs better thanHDSVS when the
SNR is low for the constant-column-fiber (SNR� 15) and the multiplicative-fiber (SNR� 5)
co-cluster. However, as the SNR increases,HDSVS has higher matching scores than PAR-
AFAC for the constant-column-fiber (SNR� 20) and the multiplicative-fiber (SNR� 10) co-
cluster. HDSVS is much better than PARAFAC for additive-fiber co-clusters. As discussed
above, constant, constant-column and multiplicative biclusters have rank 1, while additive
biclusters have rank 2. Our proposed HDSVS algorithm is especially effective for additive co-
clusters because the hyperplane model fits their linear structures well. The PARAFAC based
co-clustering method relies on the K-means clustering formulation and can only work well
with co-clusters that can be represented by their centers, corresponding to structures of rank 1.

Likewise, a 3D tensor AA 2 (100 × 100 × 100) with two overlapping co-clusters were gener-
ated. The experiment was also performed 100 times. Each time, the types of two overlapping
co-clusters were chosen randomly. For simplicity, merely the overlapped cubic patterns were
considered in the evaluation, and thus the overlapping degree v can be defined as the size of
overlapped cubes in each dimension (0� v� 9). As shown in Fig 4b, both methods have rea-
sonably good performance for detecting overlapping co-clusters. However, for all overlapping
degrees, HDSVS performs consistently better than PARAFAC.

Co-cluster Identification in Gene Expression Data from Sclerosis
Patients under an IFN- β Therapy
A 3D tensor generated from the gene expression data of multiple sclerosis patients, who
accepted a treatment of IFN-β injection, is discussed here. Twelve patients with western Euro-
pean ancestry, including eight females and four males (average age of 36.4), were recruited in
this study. Fifteen milliliters of EDTA blood sample (at peripheral venous) were drawn from
each patient, respectively at the baseline day and 2 days, 1 month, 1 year and 2 years after the
initiation of an IFN-β therapy (http://link.springer.com/article/10.1007/s12035-013-8463-1/
fulltext.html) [44, 45].

In detail, the gene expression data can be represented by a 3D tensor (gene×patient×time)
of size 18862 × 12 × 5. Considering the IFN-β therapy, we only kept the therapy-related genetic
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pathways (56 genes), leading to a simplified tensor of size 56 × 12 × 5. Regarding each gene×pa-
tient matrix (time is fixed) as a layer, Fig 5 shows the heat maps for these five layers.

HDSVS was applied on this simplified tensorAA . Its core tensor TT and singular vector matri-
cesU(n) (n = 1, 2, 3) can be extracted by HOSVD, while considering noises, a truncated HOSVD
~AA was implemented ( ~TT and ~UðnÞ). Specifically, the optimal rank for the truncated HOSVD is
(2, 4, 4), which was derived based on the method discussed in Section “HOSVD” and Fig 2.
Once the truncated HOSVD was obtained, LGA was used for the bicluster-detection along each

mode (~UðnÞ). For example, the 56 points in ~Uð1Þ can be linearly grouped into two patterns, and

similar patterns can be derived for ~Uð2Þ and ~Uð3Þ. Such linear patterns, at the first two dimen-

sions of each ~UðnÞ (orU(n)), are shown in Fig 6a to 6c, respectively. As a supplementary study,

the first three dimensions of each ~UðnÞ (orU(n)) are separately plotted in Fig 7a to 7c. Further,

Fig 4. Effects of noise and overlapping complexity on co-cluster identification in two synthetic tensors. (a)
Matching scores between true co-cluaters and the detected ones, with different SNRs. (b) Matching scores between two
overlapping co-clusters and the true ones, with various overlapping degrees.

doi:10.1371/journal.pone.0162293.g004
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the linear or planar patterns of these points in the 3D space are displayed in Fig 7d to 7f. The
planar structures consistently validates the grouping or clustering capability ofHDSVS.

As shown in Fig 6, the 56 genes are divided into two linear groups denoted as Ei (i = 1, 2),
the 12 patients correspond to three groups Pj (j = 1, 2, 3), and the 5 time points represent two

Fig 5. Heat maps for gene×patient matrices at fixed time points. (a) to (e), Scenarios for gene×patient heat maps corresponding to the
baseline day, and 2 days, 1 month, 1 year and 2 years after the initiation of an IFN-β therapy.

doi:10.1371/journal.pone.0162293.g005

Fig 6. The linear patterns embedded in the 2D singular-vector space. (a) to (c), The linear groups along the directions of first two
singular vectors of U(n) (n = 1, 2, 3), respectively.

doi:10.1371/journal.pone.0162293.g006
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groups Tk (k = 1, 2). Accordingly, we combine these indexes to build a co-cluster as follows,

CLijk ¼ fðGi
1;G

j
2;G

k
3Þg

¼ fðEi;Pj;TkÞ j i ¼ 1; 2; j ¼ 1; 2; 3; k ¼ 1; 2g
ð25Þ

To refine the findings, significant δ-CLs (Eq (19)) were extracted. CL121, including 13 genes, 6
patients, and 2 time points, finally stood out with δ = 0.156.

To profile this co-cluster, we observed it along each two modes and now present the heat
maps in Fig 8. Fig 8a and 8b display the gene×patient matrices at the baseline time and 1 year
after the IFN-β therapy. In Fig 8c through Fig 8h, the gene×time matrices for the 6 involved
patients are shown. Here we can detect the similar patterns among the first four patients (Fig
8c to 8f), roughly defining a constant-lateral-slice or additive-lateral-slice co-cluter. Addition-
ally, the patient×time matrices for the 13 genes in this co-cluster are presented in Fig 8i to 8u.
Interestingly, an L-shape is revealed in the majority of these figures, and this similarly leads to
the formation of an additive-horizontal-slice or multiplicative-horizontal-slice co-cluster. All
these results have attested the reliability of our algorithm.

The biological significance of CL121 was further analyzed according to genetic pathways and
GO annotations [33]. Specifically, important contribution of the 13 genes (CXCL10, EIF2AK2,
IFIT1, IRF7, IRF9, ISG15, ISG20, MX1, NFKB1, OAS1, RSAD2, STAT1, TLR8) to the biologi-
cal processes in GO has long been elucidated (Table 1). As reported in [48, 49], the immune sys-
tem process (GO: 0002376) was consistently annotated, verifying the enrichment of its three
sub-terms, immune effector process, defense response to virus and response to virus in our
detected co-cluster.

Moreover, the genetic pathways of the 13 genes were analyzed (Table 2). These pathways
were mostly inferred from previous studies [44, 45]. Interestingly, the enrichment of bone
remodeling pathway is shown in our analysis, with a small p-value of 2.3E-4 in Table 2. This
finding leads to sufficient biological evidences of correlating bone remodeling with the IFN-β
treatment for sclerosis patients.

Fig 7. Linear patterns embedded in the 3D singular-vector space of the gene×patient×time tensor. (a) to (c), The scatter plots along
the directions of first three singular vectors of U(n) (n = 1, 2, 3), respectively. (d) to (f), Linear or planar patterns of the 3D-points in (a) to (c).

doi:10.1371/journal.pone.0162293.g007
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Common characteristics of the patients [48], such as a shorter disease duration, a lower
EDSS score and an easier relapse, in CL121 were further revealed, leading to an effective profile
of their disease progression. Overall, our algorithm can be beneficial to personalized therapy
design and new drug discovery in the treatments of sclerosis patients.

Table 1. Biological processes regulated by the 13 annotated genes in the significant co-clusterCL121 (identified in the gene×patient×time tensor).

GO term Description P-value Enrichment (N, B, n, b)

GO:0002252 Immune effector process 8.81E-5 2.07 (56,25,13,12)

GO:0051607 Defense response to virus 1.17E-4 2.26 (56,21,13,11)

GO:0045069 Regulation of viral genome replication 2.12E-4 3.35 (56,9,13,7)

GO:0045071 Negative regulation of viral genome replication 2.12E-4 3.35 (56,9,13,7)

GO:0009615 Response to virus 2.77E-4 1.91 (56,27,13,12)

GO:0048525 Negative regulation of viral process 6.28E-4 3.02 (56,10,13,7)

GO:0050792 Regulation of viral process 6.28E-4 3.02 (56,10,13,7)

doi:10.1371/journal.pone.0162293.t001

Fig 8. Heat maps (along each twomodes) of the significant co-cluster CL121 in the gene×patient×time tensor. (a) and (b), Heat maps
of the gene×patient matrix at the baseline time and at time = 1 year. (c) to (h), Heat maps of the gene×time matrices for the 6 patients. (i) to
(u), Heat maps of the patient×time matrices for the 13 genes.

doi:10.1371/journal.pone.0162293.g008

Identifying Co-Clusters in Tensors Based on Hyperplane Detection

PLOS ONE | DOI:10.1371/journal.pone.0162293 September 6, 2016 18 / 27



Co-clustering of Embryonic Cell Cycles in the Lineages of C. Elegans
Recently, the techniques of live-cell imaging microscopy and fluorescent tagging have devel-
oped rapidly. These techniques have been broadly used in observing gene expression, nuclei
movement and nuclei division, during the embryogenesis of a single cell [34, 38, 46]. An exam-
ple of the lineage tracing of C. elegans can be found in Fig 9.

The length of a cell cycle in an organism is important in the tracing of an embryonic cell
lineage. For different organisms and cells, the length varies significantly. Depending on well-
reported protocols in [46], the cell cycle lengths of*300 C. elegans embryos were evaluated by
perturbing their 1219 genes in [49] (http://phenics.icts.hkbu.edu.hk/). For simplicity, the 8-cell
stage in the AB branch was regarded as our founder-cell stage [34], and 14 descendants of each
founder cell were studied. As a summary, a gene×descendant×founder tensor of size 1219 × 14
× 8 was constructed. Importantly, identification of co-clusters in this tensor can lead to the der-
ivation of cell fates in the C. elegans lineage.

Similar to the preceding section, the optimal rank of (2, 5, 8) was derived for the truncated

HOSVD. Linear patterns (LGA) in ~UðnÞ were separately displayed in Fig 10a to 10c, where the
first two column vectors were used as representatives. Meanwhile, the first three dimensions of

each ~UðnÞ (Fig 11a to 11c) and their planar patterns in the 3D space are separately displayed in
Fig 11d to 11f.

Fig 9. Lineage tracing of C. elegans at the 200-cell stage.

doi:10.1371/journal.pone.0162293.g009

Table 2. Genetic pathways of the 13 annotated genes in the significant co-cluster CL121 (identified in the gene×patient×time tensor).

Pathway annotated Term P-value Benjamini adjusted p-value

BIOCARTA Bone remodelling 2.3E-4 1.0E-2

BIOCARTA IFN-α signaling pathway 1.9E-2 3.5E-1

BIOCARTA Double stranded RNA induced gene expression 1.9E-2 3.5E-1

BIOCARTA Inactivation of Gsk3 by AKT causes accumulation of b-catenin in alveolar macrophages 5.9E-2 6.0E-1

BIOCARTA Toll-like Receptor Pathway 7.5E-2 5.9E-1

KEGG PATHWAY Toll-like receptor signaling pathway 2.1E-6 4.3E-5

KEGG PATHWAY RIG-I-like receptor signaling pathway 5.1E-5 5.1E-4

KEGG PATHWAY Cytosolic DNA-sensing pathway 1.7E-3 1.1E-2

KEGG PATHWAY Chemokine signaling pathway 1.8E-2 8.8E-2

KEGG PATHWAY Pancreatic cancer 8.2E-2 2.9E-1

doi:10.1371/journal.pone.0162293.t002
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Specifically, 4, 2 and 2 clusters in the three modes were detected and are shown in Table 3.
Here, the two groups of founder cells (F) are consistently traced to their mother cells (ABal/
ABpl and ABar/ABpr). Furthermore, all the cells inD2 are terminal cells, and only three termi-
nal cells (�aaa, �paa and �pap) are distributed toD1. Compared to ancestors, terminal cells at
the same stage were reasonably grouped together, as earlier cell cycles had evolved to different
lengths after multiple cell divisions.

A significant δ-CL (CL122), including 42 genes (E
1), 5 terminal cells (D2), and 4 founder

cells (F2), was detected with δ = 0.0702. The descendant×founder matrices for the correspond-
ing 42 genes are displayed in Fig 12, as a series of heat maps. Likewise, similar patterns (two
horizontal black lines) can be identified in the majority of these maps, defining a specific addi-
tive or multiplicative co-cluster type. The biological functions of these 42 annotated genes were
further explored, using the GO terms and KEGG pathways [33]. Results are listed in Table 4,
where the four annotated functional categories have long been emphasized in earlier studies of
lineage tracing of C. elegans [34, 46, 49]. These functional categories may be importantly corre-
lated to the descendant cells of ABar and ABpr branches (F2).

Fig 11. Linear patterns embedded in the 3D singular-vector space for the lineage tracing data of C. elegans. (a) to (c), The scatter
plots along the directions of first three singular vectors of U(n) (n = 1, 2, 3), respectively. (d) to (f), Linear or planar patterns of the 3D-points in
(a) to (c).

doi:10.1371/journal.pone.0162293.g011

Fig 10. The linear patterns embedded in the 2D singular-vector space. (a) to (c), The linear groups along the directions of first two
singular vectors of U(n) (n = 1, 2, 3), respectively.

doi:10.1371/journal.pone.0162293.g010
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Another significant δ-CL (CL321) with δ = 0.0853 include 379 genes (E3), 5 terminal cells (D2),
and 4 founder cells (F1). Cell-fate changes have been well demonstrated with perturbed genes
such as mex-5, gsk-3, skr-2 and cdc-25.1 [34], and now they are detected in CL321 as well. As a
great number (379) of genes were involved, multiple functional categories were annotated with

Fig 12. Heat maps. Heat maps of the descendant×founder matrices for the 42 genes involved in the significant co-cluster CL122 (identified
in the gene×descendant×founder tensor).

doi:10.1371/journal.pone.0162293.g012

Table 3. The linear groups in different modes of the gene×descendant×founder tensor (“*” denotes a
founder cell).

Features modes The corresponding linear groups

Perturbed genes (E) E1 The number of genes in the group is 42

E2 The number of genes in the group is 729

E3 The number of genes in the group is 379

E4 The number of genes in the group is 69

descendant cells (D) D1
“*a” “*aa” “*aaa” “*ap” “*p” “*pa” “*paa” “*pap” “*pp”

D2
“*aap” “*apa” “*app” “*ppa” “*ppp”

founder cells (F) F1
“ABala” “ABalp” “ABpla” “ABplp”

F2
“ABara” “ABarp” “ABpra” “ABprp”

doi:10.1371/journal.pone.0162293.t003
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smaller p-values. The top sub-terms inGO pathway are embryonic development ending in birth or
egg hatching (GO: 0009792), post-embryonic development (GO:0009791) and nematode larval
development (GO: 0002119), each with a p-value less than 7.0E-30. The top three sub-terms in
KEGG pathway are spliceosome, RNA degradation andWnt signaling, as revealed by CL321. Nota-
bly, it successfully captures the well-acknowledged module—Wnt signaling pathway.

Experiment Comparisons with Other Methods Using 2D Synthetic Data
and 2D Yeast Gene Expression Data
In order to test the performance and robustness ofHDSVS, we implemented a series of com-
parion experiments. Matrices of 2D tensor data were used because most existing methods can
process 2D data only and cannot be generalized to higher-order tensors easily, and multiple
state-of-the-art biclustering methods were adopted for such comparisons. These methods
include ISA [19], CC [2], FABIA [21], BSGP [18], SMR [29] and BiMax [20]. Specifically in
our comparison experiments,MTBA (MATLAB Toolbox for Biclustering Analysis) was used as
an algorithm-suite.

First, 2D synthetic data were generated based on principles in [47], resulting in matrices
(500×200) with single-type biclusters (50×50). The background values are generated by a nor-
mal distribution N(0, 1). Comprehensively, constant, constant-row/column, additive and
mulitplicative biclusters were considered and generated as follows:

1. constant biclusters, i.e. {aij = 2 j i 2 I, j 2 J};

2. constant-row or constant-column biclusters, i.e. faTiJ ¼ mi1J j i 2 Ig or {aIj = μj1I j j 2 J} where

1T
J or 1I is a column vector of ones, μi and μj are drawn from a normal distributionN(0, 1);

3. additive-row or additive-column biclusters, i.e. faTiJ ¼ mi1J þ aTð1ÞJ j i; k 2 Ig or faIj ¼
mj1I þ aTið1Þ j j; k 2 Jg where a(1)J (ai(1)) is the first row (column) of the biclusters, μi, μj and

each value of a(1)J (ai(1)) are drawn from a normal distributionN(0, 1);

4. multiplicative-row or multiplicative-column biclusters, i.e. faTiJ ¼ mia
T
ð1ÞJ j i; k 2 Ig or {aIj =

μjaI(1) j j, k 2 J} where a(1)J (ai(1)) is the first row (column) of the biclusters, μi, μj and each
value of a(1)J (ai(1)) are drawn from a normal distributionN(0, 1).

For each scenario involving a specific bicluster type, the matching scores of the detected biclus-
ters and the true ones under Gaussian white noise with different SNRs (dB) were derived for
each method. These SNR-MS curves of the compared methods and our algorithm are displayed
in Fig 13, where parts a, b, c and d show the case concerning constant, constant-row/column,
additive and multiplicative biclusters, respectively. Depending on such SNR-MS curves, the
robustness of each method can be reasonably measured. As shown in Fig 13,HDSVS performs
well and stably under different SNRs. Espetially, it outperforms others when additive biclusters
are involved. This validates the robustness and generalization capability of our method.

Table 4. Annotated functional categories revealed by the significant co-clusterCL122 (identified in the gene×descendant×founder tensor).

Annotated functional categories Term P-value Benjamini adjusted p-value

GO:0009792 Embryonic development ending in birth or egg hatching 8.0E-4 1.1E-1

GO:0006260 DNA replication 4.1E-3 2.6E-1

GO:0006259 DNA metabolic process 4.4E-2 8.9E-1

KEGG PATHWAY Mismatch repair 2.3E-2 3.2E-1

KEGG PATHWAY DNA replication 4.4E-2 3.0E-1

doi:10.1371/journal.pone.0162293.t004
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To further evaluate the statistical significance of the results generated by different methods,
a biological 2D tensor, namely gene expression data of yeast cells towards different stress con-
ditions, was employed in our comparison experiments [20]. The original microarray data
(http://www.tik.ee.ethz.ch/sop/bimax/) contains 2993 genes and 173 stress conditions, and
have been normalized using mean centering. A set of Perl modules for accessing GO informa-
tion and evaluationg the collective annotation of a gene group to GO terms was developed in
[32], based on which the statistical significance of each annotation can be calculated. Using
such modules, we carried out the GO enrichment significance test for our method and each of
the comparison methods. The results from different thresholds are presented in Fig 14, where
HDSVS and SMR outperforms other methods in this significance test. However,HDSVS (59
seconds) is about 12 times faster than SMR (786 seconds, when K = 2).

Conclusion
In this paper, we proposed a co-clustering method based on hyperplane detection in singular
vector spaces (HDSVS), to identify co-clusters in high-order tensors. Based on linear structures
of co-cluster patterns, this algorithm successfully extracted significant co-clusters (δ-CLs). Spe-
cifically, linear patterns embedded in the singular vector matrix along each mode, produced by
a truncated HOSVD, were the key to co-cluster identification. These linear structures revealed
by LGA showed a favorable performance in capturing the significant patterns.HDSVS was val-
idated by multiple synthetic and biological tensors.

It is worth noting that, the performance ofHDSVS was investigated with respect to different
noise levels and overlapped degrees in tensors. Our method showed a robust performance on
noisy tensors, due to the selection of singular vectors by the truncated HOSVD. Meanwhile, the

Fig 13. Robustness test and performance comparison forHDSVS and a series of other biclustering methods (ISA,CC, FABIA,
BSGP, SMR and BiMax). (a) Signal-to-noise ratios (SNRs) vs. matching scores (MSs) for different biclustering methods, to search for
constant biclusters. (b) SNR-MS curves for different biclustering methods, to search for constant-row/column biclusters. (c) SNR-MS curves
for searching for additive biclusters. (d) SNR-MS curves for searching for multiplicative biclusters.

doi:10.1371/journal.pone.0162293.g013
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applications ofHDSVS to two biological tensors, namely the gene×patient×time tensor and the
gene×descendant×founder tensor, validated its reliability in dealing with real-world applications.
Especially, the genes in the detected co-clusters were significantly enriched in biologically-veri-
fied pathways and GO terms. In addition, comparisons betweenHDSVS and other popular
methods on 2D synthetic data and 2D yeast gene expression data further showed the robustness
and stability ofHDSVS. The experiment results show thatHDSVS is an efficient method for co-
cluster identification in high-order tensors. In this paper, we have used HOSVD for tensor
decomposition. We can also consider the use of several other decomposition methods. For
example, the dominant multidimensional subspace in tensor data can be found using higher
order orthogonal iteration of tensors (HOOI) [50]. As discussed above, PARAFAC with sparse
latent factors [29] has good performance for detecting co-clusters of rank 1 with low SNR. These
decomposition methods can be explored in the future to improve the performance of HDSVS.

Supporting Information
S1 Dataset. Yeast gene expression data, C. elegans cell cycle data and sclerosis patients gene
expression data.
(MAT)
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