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This paper presents a hardware architecture for singular spectrum analysis of Hankel tensors, including 

computation of tucker decomposition, tensor reconstruction and final Hankelization. In the proposed de- 

sign, we explore two level of optimization. First, in algorithm level, we optimize the calculation process 

by exploiting the Hankel property to reduce the computation complexity and on-chip BRAM resource us- 

age. Secondly, in hardware level, parallelism is explored for acceleration. Resource sharing is applied to 

reduce look-up tables (LUTs) usage. To enable flexibility, the number of processing elements (PEs) can be 

changed through parameter setting. Our proposed design is implemented on Field-Programmable Gate 

Arrays (FPGAs) to process third order tensors. Experiment results show that our design achieve a speed- 

up from 172 to 1004 compared with CPU implementation via Intel MKL and 5 to 40 compared with GPU 

implementation. 

© 2018 Published by Elsevier B.V. 
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1. Background 

In mathematics, a tensor is often represented as a multidimen-

sional (or multi-way) data array. In the past, to analyze tensor

data, the most common approach is to first flatten or vectorize the

data, and then use the well-developed matrix analysis tools, such

as principal component analysis (PCA), nonnegative matrix factor-

ization(NMF), and sparse component analysis (SCA) [1,2] . However,

the flattening or unfolding operation breaks the tensor structure

which can be important as a reflection of information in a multi-

dimensional space, and such method is unable to capture multiple

interactions and couplings. Moreover, in matrix analysis, like inde-

pendent component analysis (ICA) [3,4] , strict constraints should

be imposed to ensure uniqueness. Such constraints sometimes will

affect the accuracy of the model. To overcome such drawbacks,

tensor decomposition method became popular in different fields,

such as signal processing [5] , computer vision [6,7] and data min-

ing. It is proved to be successful in the applications of social net-

work analysis, brain data analysis, web mining, information re-

trieval and healthcare analytics [8] . 

Basically, there are two fundamental types of tensor decompo-

sition, i.e. CANDECOMP/ PARAFAC decomposition (CPD) and Tucker
∗ Corresponding author. 
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ecomposition (TKD) [9] . TKD is a form of higher-order principal

omponent analysis, which is an extension of matrix PCA. Such

ecomposition can be done through higher order singular value

ecomposition (HOSVD) [9,10] , which provides a powerful tool for

pectrum analysis. On the other hand, in signal processing, Hankel

atrices play an important role [11] . As an extension, Hankel ten-

or was introduced by Luque and Thibon [12] . It has been success-

ully applied to exponential data fitting [13–15] , and signal separa-

ion modeling [16] . 

However, by now, many researchers only focus on how to apply

ensor decomposition method or how to optimize the decompo-

ition algorithm. There is little hardware architecture development

hat aims at accelerating analysis of Hankel tensors. Tensor decom-

osition is known to be computationally intensive. For the ten-

or reconstruction process and Hankelization process, their com-

utational complexity are rather high, which is ( N 1 r 
3 + N 1 N 2 r 

2 +
 1 N 2 N 3 r) and ( N 1 N 2 N 3 ) respectively, where N 1 , N 2 and N 3 denotes

he size of each dimension and r is the rank of the tensor, and

t increases significantly with the dimension rising. To our knowl-

dge, this is the first attempt to build a hardware accelerator for

ingular spectrum analysis of Hankel tensors. Our work has three

ain contributions as follows: 

– We propose a hardware architecture to perform Tucker de-

composition of a Hankel tensor and its reconstruction. In ad-

dition, by simply disabling the Hankelization process module,

https://doi.org/10.1016/j.micpro.2018.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
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our technique can be applied to the analysis of arbitrary (non-

Hankel) tensors. 

– By re-organizing the calculation process and employing the full

pipeline technology, we have obtained a speed-up from 286 to

1004 times for different workloads compared with CPU imple-

mentation and 16 to 40 compared with GPU implementation. 

– We present a BRAM resources friendly architecture to com-

pute HOSVD of Hankel tensors. The on-chip BRAM usage in our

method decrease from O ( n 2 ) to O ( n ). 

This paper is organized as follows. In Section 2 , a quick in-

roduction of singular spectrum analysis of Hankel tensors is pro-

ided. In Section 3 , we re-organize the computation process and

ropose a new architecture for acceleration. In Section 4 , we eval-

ate the performance of the proposed design and compare it with

oftware implementation on CPU. Finally, in Section 5 , we conclude

ur work. 

. Singular spectrum analysis of hankel tensor 

For a given input time series x ∈ C 

N , to derive a Hankel tensor,

lso known as embedding, first we use an overlapping window to

ap x to ˜ X shown in Eq. (1) , 

˜ 
 = 

⎛ 

⎜ ⎜ ⎝ 

x 1 x 2 · · · x l 3 
x m +1 x m +2 · · · x m + l 3 

. . . 
. . . 

. . . 
. . . 

x (N 3 −1) m +1 x (N 3 −1) m +2 · · · x (N 3 −1) m + l 3 

⎞ 

⎟ ⎟ ⎠ 

(1) 

here l 3 is the window size, m is the interval length between con-

ecutive window positions, and N 3 denotes the number of parts

egmented by the window. Then each row of ˜ X is segmented us-

ng an overlapping window with interval of one. In other words,

he i th row of ˜ X is mapped to a matrix in Eq. (2) , 

 :: i = 

⎛ 

⎜ ⎜ ⎝ 

˜ X (i, 1) ˜ X (i, 2) · · · ˜ X (i, N 2 ) 
˜ X (i, 2) ˜ X (i, 3) · · · ˜ X (i, N 2 + 1) 

. . . 
. . . 

. . . 
. . . 

˜ X (i, N 1 ) ˜ X (i, N 1 + 1) · · · ˜ X (i, N 2 + N 1 ) 

⎞ 

⎟ ⎟ ⎠ 

(2) 

hich is the i th frontal slice of constructed Hankel tensor X , de-

oted as X :: i , where N 2 is the size of overlapping window, N 1 is

he number of segments obtained by the moving forward window

nd N 1 + N 2 = l 3 . More details on how to form the tensor from a

ime series can be found in [5] . In our method, we only require the

ime series input, and parameters N 1 , N 2 , N 3 and m rather than the

xplicit Hankel tensor. After the embedding process, we can get a

hird order Hankel tensor H(x ) ∈ C 

N 1 ×N 2 ×N 3 , where “third order”

efers to the number of dimension of H(x ) . 

.1. HOSVD of Hankel tensors 

Suppose H(x ) ∈ C 

N 1 ×N 2 ×N 3 is a third order Hankel tensor, which

s generated by vector x with length of N = N 1 + N 2 + N 3 − 2 . Ac-

ording to the Hankel property, we have H(x ) i jk = x (i + j + mk ) .

ollowing the definition of Tucker decomposition in [9] , Hankel

ensor H(x ) can be decomposed as 

ˆ 
 (x ) = S ×1 U 

� 
1 ×2 U 

� 
2 ×3 U 

� 
3 , (3) 

here × x represents tensor-matrix product, S is called core ten-

or [9] , U 1 ∈ C 

N 1 ×r 1 , U 2 ∈ C 

N 2 ×r 2 and U 3 ∈ C 

N 3 ×r 3 are obtained by

omputing HOSVD of the tensor H(x ) , i.e. performing SVD of

(x ) (1) H(x ) ∗
(1) 

to get U 1 , SVD of H(x ) (2) H(x ) ∗
(2) 

to get U 2 , and

VD of H(x ) (3) H(x ) ∗
(3) 

to get U 3 , respectively, where H(x ) (n ) de-

otes the mode-n unfolding of tensor H(x ) . For the core tensor

, it can be obtained as follows. In Eq. (4) , it includes a series of

ensor-matrix product. In fact, to multiply a tensor with a matrix,
e just need to reorganize (or unfold) the tensor as a matrix, and

hen perform matrix multiplication. Afterwards, reorganize the re-

ult as a tensor back. The detail definition for how to reorganize

he tensor to matrix or matrix to tensor can be found in [9] . 

˜ 
 = H( ̃ x ) ×1 Ū 1 ×2 Ū 2 ×3 Ū 3 , (4) 

In order to get U 1 , U 2 and U 3 , we choose the subspace it-

ration method for Hermitian Eigenvalue Problems (HEP) [17] ,

hich is shown in Algorithm 1 in detail, for computing the dom-

lgorithm 1 Subspace iteration algorithm for Hermitian eigen-

alue problem (HEP). 

Input : Random initial guess matrix Z , Hermitian matrix A =
(x ) (x ) H(x ) ∗

(x ) 
; 

Output :Orthogonal matrix V ; 

1: Perform QR factorization of Z : Z = VR 

2: for k = 1 , 2 , . . . do 

3: Y = AV 

4: H = V 

∗Y 

5: if || Y − VH || 2 > εM 

then 

6: Perform QR factorization of Y : Y = VR 

7: else 

8: Break the for loop and output V 

9: end if 

10: end for 

nant eigenvalues and eigenvector of H(x ) (x ) H(x ) ∗
(x ) 

, where x =
 , 2 , 3 . By exploiting Hankel property, matrix-matrix multiplication

f H(x ) (x ) H(x ) ∗
(x ) 

can be represented as 

 = H(x ) (x ) H(x ) ∗(x ) = �x H x D x H 

∗
x �x 

iag (�x ) = ind { x } , x = 1 , 2 , 3 

iag (D 1 ) = ind { 2 } ∗ ind { 3 } , diag (D 2 ) = ind { 1 } ∗ ind { 3 } , 
iag (D 3 ) = ind { 1 } ∗ ind { 2 } , 

nd { 1 } ∈ { 0 , 1 } N 1 , ind { 2 } ∈ { 0 , 1 } N 2 , 
nd { 3 } ∈ { 0 , 1 } N+2 −N 1 −N 2 , 

nd { 1 } = { 1 , 1 , . . . , 1 } , ind { 2 } = { 1 , 1 , . . . , 1 } , 
nd { 3 } = { 1 , 0 , . . . , 0 ︸ ︷︷ ︸ 

m 

, 1 , 0 , . . . , 0 ︸ ︷︷ ︸ 
m 

, . . . , 1 , 0 , . . . , 0 ︸ ︷︷ ︸ 
m 

, 1 } , (5) 

here H x is a N x × (N + 1 − N x ) Hankel matrix generated from in-

ut x , and �x and D x are diagonal matrices, x = 1 , 2 , 3 , ind{1},

nd{2} and ind{3} are indices that denote the generation scheme

f the Hankel tensor. 

.2. Core tensor computation and Hankel tensor reconstruction 

In signal processing applications, one needs to filter the input

ignal to obtain a new core tensor [5] and then reconstruct the

ignal with the original eigen-matrices derived above and new core

ensor. Such core tensor ˜ S is obtained from Eq. (4) , where ˜ x repre-

ents the processed input signal. Our previous developed fast Han-

el tensor-vector multiplication algorithm [18] can be applied to

ccelerate this process. Therefore, we can transform the computa-

ion to the element-wise calculation 

˜ S i jk = i f f t{ ̃ x } � · [ f f t{ ̄U 1 (: , i ) } . ∗ f f t{ ̄U 2 (: , j) } 
. ∗ f f t{ ̄U 3 (: , k ) } ] , (6) 

here . ∗ represent matrix Hadamard product and fft{ · } denotes

he fast Fourier transform. We can see that, in the above equation,

or calculation of 1 element of core tensor ˜ S i jk , we only need to

ompute 3 FFT, 1 IFFT, 3 point-wise vector multiplication and 1
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Fig. 1. Modified procedure for computing Y = �x H x D x H 

∗
x �x V . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Matrix multiplication module. 
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vector inner product. Since FFT computation is efficient in hard-

ware, the computation complexity is therefore reduce compared to

the original calculation process as Eq. (4) . By using the new core

tensor, we can reconstruct the tensor H and Hankelize it as a time

series h l , 

˜ H = 

˜ S ×1 U 

� 
1 ×2 U 

� 
2 ×3 U 

� 
3 (7)

˜ h l,temp = 

∑ 

i + j+ mk = l 
˜ H i, j,k (8)

˜ h l = 

˜ h l,temp 

d l 
, (9)

where d l is determined by d l = ind { 1 } ∗ ind { 2 } ∗ ind { 3 } . As illus-

trated at the beginning of Section 2.1, for a Hankel tensor, we

should ensure H(x ) i jk = x (i + j + mk ) . As a result, to make a non-

Hankel tensor as a Hankel tensor, i.e. the Hankelization process,

we can average entries H(x ) i jk to h l , where i + j + mk = l, which

is shown in Eqs. (8) and (9) . 

3. High performance hardware architecture design 

To implement the computation module discussed in the preced-

ing section, we explore parallelism of the process and proposed a

high performance and resource friendly hardware architecture. 

3.1. HOSVD Module 

Based on the subspace iteration Algorithm 1 , the main process

is to iteratively perform Y = �x H x D x H 

∗
x �x V , which is a Hankel ma-

trix multiplication procedure, and then update V by QR factoriza-

tion Y = VR until the process converges. QR factorization is imple-

mented following the Householder algorithm. 

For the process of computing Y , the extracted parallelism is

shown in Fig. 1 . Though some researchers raise a scheme to per-

form matrix multiplication by Intel AVX [19] , it still has some per-

formance lost compared with the FPGA implementation. In the

proposed design, we modify the matrix multiplication module pro-

posed in [20] . The differences between our matrix multiplication

module, shown as Fig. 2 and [20] is that our module adds an ex-

tra multiplier, a multiplexer and a BRAM to cache diag( D x ) n . The

reason why we add these will be explained later in this section.

For C = A · B , FIFO 1 to FIFO n are used to store partial column of a

same column of matrix A , with a size of 2 ∗x bytes for each. Likely,

BRAM-B 1 to BRAM-B m 

are used to store partial row of a same row

of matrix B , with a size of 2 ∗y bytes for each. BRAM-C ij , where

i = 1 , 2 , . . . n, j = 1 , 2 , . . . , m, is used to cache the outer product of

partial column in FIFO i and partial row in BRAM j , with a size of

2 ∗xy bytes. The reason for the size of BRAM or FIFO above include

a factor of “2” is that we use double buffering strategy for such

data storage. BRAM-diag(D x ) 1 to BRAM-diag(D x ) n are used to cache

partial value of diag ( D x ), with a size of x bytes for each. 

To start with, as shown in Fig. 1 , we first generate the first col-

umn of H 

∗
x according to Eqs. (1) to (2) and feed it to the FIFOs in

Fig. 2 . Then the first row of �x V is also fed to the local BRAM-B m 
n Fig. 2 . According to Eq. (5) , entries of diag( �x ) is either 0 or 1.

hus, diag( �x ) V is equivalent to set specific rows of V to be zero

epending on the value of corresponding entry of diag( �x ). For the

rocess of fetching a row of �x V , we only need to decide whether

e should fetch the row of V or only feed zero row. Then, we can

erform matrix multiplication of H 

∗
x ( �x V ) . Such procedure is per-

ormed in pipeline as Fig. 1 . On the other hand, diagonal entries

f D x is computed while the multiplication takes place following

q. (5) , which is a predefined sequence only related to the dimen-

ion of Hankel tensor. Then it will be fed to BRAM-diag(D x ) 1 . Once

he result of multiplication between FIFO n and BRAM-B m 

avail-

ble, control logic will fetch the corresponding entry of diag( D x )

o the next multiplier and the multiplication result will be fed to

he adder, as shown in Fig. 2 . 

After we get the result of A = D x H 

∗
x �x V , which is stored in

he group of BRAM-C nm 

separately, we will multiply the remain-

ng matrix to this result to get Y by reusing the matrix multipli-

ation module. Firstly, one row of A will be fetch to BRAM-B m 

. At

he same time, we need to feed the first column of �x H x . To do

his, we need to generate a column of H x by the method we gen-

rate H 

∗
x before. As discuss before, �x H x is equivalent to set the

orresponding row of H x to be zero. As a result,fetch a column of

x H x is equivalent to set corresponding entry of the column of H x 

o be zero. Then, we can perform matrix multiplication of ( �x H x ) A

ollowing the scheme in [20] in pipeline. At this time, since we

o not need to multiply diagonal matrix diag( D x ), a multiplexer is

dded to bypass the second multiplier as shown in Fig. 2 . 

With this implementation, Eq. (5) can be computed with 2 ma-

rix multiplications instead of 5 as suggested by the algorithm. As

e can see that, throughout the procedure, we compute the re-

uired elements of Hermitian matrix H(x ) (x ) H(x ) ∗
(x ) 

on the fly. Or

n other words, Hermitian matrix calculation is merged with the

alculation of Y . Thus, we do not need to store H(x ) (x ) H(x ) ∗
(x ) 

ex-

licitly on-chip, which is of size (N 

2 
1 

+ N 

2 
2 

+ N 

2 
3 
) , where N 1 , N 2 , N 3

s each dimension of the Hankel tensor. We only store the vector

 in on-chip BRAM, which is used to form H(x ) (x ) H(x ) ∗
(x ) 

. As a re-

ult, on-chip BRAM requirement dropped from (N 

2 
1 + N 

2 
2 + N 

2 
3 ) to

(N + N + N − 2) . 
1 2 3 
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Fig. 3. Architecture of core tensor computation. 
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Fig. 4. Pipeline structure of signal reconstruction process. 
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.2. Core tensor computation for the Hankel tensor module 

First we denote h = i f f t{ ̃ x } T , u 

i 
1 

= f f t{ ̄U 1 (: , i ) } , u 

j 
2 

= f f t{ ̄U 2 (:

 j) } and u 

k 
3 

= f f t{ ̄U 3 (: , k ) } , where 1 ≤ i ≤ R 1 , 1 ≤ j ≤ R 2 and

 ≤ k ≤ R 3 . Then we can rewrite Eq. (6) as 

 i jk = 

N ∑ 

l=1 

h (l) · u 

i 
1 (l) · u 

j 
2 
(l) · u 

k 
3 (l) . (10)

ased on this equation, we perform the calculation based on two

FTs, FFT-a and FFT-b and 8 multiplier-accumulator trees (Mult-

cc), as shown in Fig. 3 . Basically, we implement a triple nested

or-loop in the hardware. The most inner loop sequentially com-

utes a pair of u 2 . The second loop calculates a pair of u 1 and then

tores the result back to the RAM. The outermost loop calculates a

air of u 3 sequentially. As a trade-off between performance and re-

ources, only 5 vectors, h , u 

2 i −1 
1 

, u 

2 i 
1 

, u 

2 j−1 
2 

and u 

2 j 
2 

, are cached for

euse and changed iteratively. Once execution flow enters the most

nner loop and the FFT pairs of u 3 become available, the previous

esult in RAM and the u 3 pair are fed to 8 multiplier-accumulator

rees. In the proposed design, FFT module is fully pipelined and

he Fourier transform is overlapped with the multiply-accumulate

rocess. Assume R 1 = R 2 = R 3 = r, the time complexity is reduced

rom (2 r 3 · N ) to ( r 3 · N /8) after acceleration. 

To save resources, the complex number multipliers used in the

ultiplier-accumulator trees are time-shared with matrix multipli-

ation module which is activated in the signal reconstruction part

n our design. The LUT usage is thus reduced by 10% this way. 

The core tensor computation is the same as tensor reconstruc-

ion process, as shown in Eqs. (4) and (7) . Thus, for a tensor with-

ut the Hankel property, core tensor can be obtained through the

ensor reconstruction module by disabling Hankelization process

odule which is introduced in the following part. 

.3. Tensor reconstruction and Hankelization module 

As illustrated in Section 1 , these two processes are com-

utationally intensive, which have complexity ( N 1 r 
3 + N 1 N 2 r 

2 +
 1 N 2 N 3 r) and ( N 1 N 2 N 3 ) respectively, where N 1 , N 2 and N 3 denotes

he size of each dimension and r is the rank of the tensor. In

his section, we explain how to accelerate the tensor reconstruc-

ion and Hankelization processes. By utilizing the property of ten-

or multiplication, Eq. (7) can be re-written as 

 = { U 2 · { U 1 · { U 3 · S (3) } (1) } (2) , (11)

here { · } ( x ) refers to mode-x tensor unfolding operation [9] . To ac-

elerate the process, we properly divide the whole task into small

artial tensor reconstruction and design a heavy pipeline architec-
ure as shown in Fig. 4 . The architecture of each matrix-mult mod-

le is shown as Fig. 2 . For a PE we mention below, it refers to a

ingle basic processing element as circled in Fig. 2 . 

For the first 3 stages, which correspond to three tensor-matrix

ultiplications in Eq. (7) . Firstly, the three eigen-matrices, U x , are

ivided into k x row partitions, where x = 1 , 2 , 3 , and let U 

(m ) 
x de-

ote the m th row block. We use R 
j 
i 

to denote the i th partial re-

ult as output of Stage j . For the first stage, we flatten the core

ensor S in mode 3, and multiply it with U 

(1) 
3 

. The result, R 1 
1 
,

ill be cached in RAM and flattened into mode 1 and feed to

he same matrix-mult module to perform U 

(1) 
1 

· { R 1 1 } (1) . Similarly,

he result, R 2 1 will be cached and continue to feed to Stage 3 to

erform U 

(1) 
2 

· { R 2 1 } (2) . At the same time, the matrix-mult1 module

ill perform U 

(2) 
1 

· { R 1 1 } (1) . We continue to multiply R 2 1 with each

lock of U 2 , until the last block have been reached. Then we up-

ate Stage 2 result, i.e. computing U 

(3) 
1 

· { R 1 
1 
} (1) . After we get R 2 

2 
,

tage 3 process will execute as before. Until R 1 
1 

have been mul-

iplied with all the block of U 1 , we start to update the Stage 1

esult with U 

(2) 
3 

· {S 3 } (1) , i.e. R 1 
2 
, and update Stage 2 result with

 

(1) 
1 

· { R 1 
2 
} (1) . Then the Stage 3 process will continue to be exe-

uted. This execution flow will be shown as Table 1 . We define

ne phase as the time taken in deriving a single partial product

n Stage 3, i.e. 
N 3 N 2 N 1 r 2 
k 1 k 2 k 3 PE 2 

. To save BRAM resources, the latest par-

ial products of Stage 1 and Stage 2 will be cached, and the older

ill discard. Calculating partial products in Stage 1 and Stage 2

ill consume m and n phases respectively. With proper number

f PEs, we make m + n < k 3 but not in great difference, which en-

ure Stage 1 and Stage 2 are overlapped with Stage 3 and use PEs

s little as possible. The whole process needs a total number of

 (k 3 + k 1 k 2 k 3 + 1) · N 3 N 2 N 1 r 2 
k 1 k 2 k 3 PE 2 

) phases. 

For Stage 4, i.e. accumulation process as Eq. (8) , if a set of en-

ries { a i m j m k m } of tensor A satisfy i m 

+ j m 

+ k m 

= C, they will be ac-

umulated to the C th entry of the vector h and finally it is divided

y d l . Since addition in floating point logic always needs multi-

le pipeline stages, accumulation process using one adder should

ait for the previous addition results. In the proposed design, a

echnique called adder time-sharing is used. Data which will be

ccumulated to different entries of h are interleaved to time-share

he adders and store intermediate results not used immediately.

o enable this interleaving operation, we set row number of Stage

 partial matrix product to 20 which should be no less than the

ipeline stage of a floating point adder, and feed the same adder

ith elements of partial products through the column major. Let

 i, j denote the partial matrix product caching in the ( ij )th result

n BRAM of the PE group in Stage 3. To accelerate this process, we

se Stage 4 in Fig. 4 which is overlapped with Stage 3 calculation

nd we also increase adder unit to enhance parallelism. To be spe-

ific, we need to constrain the time consumption within one phase.

e also further explore adder sharing. Every two matrix products,
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.e. C 2 i, j and C 2 i +1 , j , will share the same adder and one BRAM, de-

oted as h 
i, j 

mid 
, to store the intermediate accumulated results. Par-

ial products in the odd rows of PE group, i.e. { C 2 i +1 , j | i, j ∈ N , i ≤
n/ 2 , j ≤ m } , are first fed to the Stage 4 module, then the process

s repeated for the even rows, i.e. { C 2 i, j | i, j ∈ N , i ≤ n/ 2 , j ≤ m } . To

nable dynamic routing for the adder array, a RAM selector is im-

lemented to route the data from C i, j and h 
i, j 

mid 
to the appropriate

dder and feed the addition result to the appropriate h 
i, j 

mid 
BRAM.

fter the whole tensor is reconstructed, i.e. the pipeline of Stages

 to 4 complete all their work, h will be divided by a vector d

lement-wise in the “Average Process” in Fig. 4 , which forms the

nal Hankelized result, i.e. the vector obtained by Eq. (9) . 

. Performance and resource usage analysis 

To our knowledge, there are some works that tried to build

 distributed system to accelerate Tucker decomposition. In de-

ail, these works are try to optimize the tensor times matrix chain

TTMc) process for sparse tensor [21,22] . However, they just min-

mize storage usage for sparse tensor and distribute the element-

ise computation to different machines. They do not fully explore

he fine grain parallelism and none of them target at Hankel tensor

or exploiting the Hankel property. Since there is no existing archi-

ecture for Hankel tensor computation acceleration, we implement

ll the part by using the optimized method provided in Intel MKL

ibrary, which is a best choice to exploit the computation ability in

PU. On the other hand, we implement a GPU version for compar-

son. 

In the CPU implementation, in detail, we use cgemm for tensor-

atrix multiplication, cdotu for dot product calculation and dfti

ountine for FFT and IFFT calculation. While in the GPU imple-

entation, for the HOSVD part, we implement a same algorithm

y using cuBLAS and cuSOLVER for a better result. In detail, we

se cgemm for complex value matrix multiplication, DnCgeqrf rou-

ine for QR decomposition, Scnrm for norm calculation. For the

ore tensor computation, we use cuFFT to compute fft and ifft and

uBLAS for vector multiplication and dot product. For the tensor

econstruction, we utilize the method raised in [23] . In detail, as

he strategy used in our hardware design, for Eq. (11) , we also di-

ide U x into k x row partitions, where x = 1 , 2 , 3 . Each time we pick

 row partition of U 1 , U 3 and U 3 , following Eq. (11) ,we only recon-

truct a small block tensor with a size of k 1 · k 2 · k 3 . After a small

lock tensor reconstructed, we perform Hankelization. By this way,

he whole big tensor reconstruction and hankelization is broken

own to sequentially small block tensors reconstruction and han-

elization. 

We compare the execution time of our architecture with CPU

nd GPU implementation. CPU implementation is run on Intel Core

7-6500 CPU at 2.59 GHz with 8-GB memory. GPU implementa-

ion is run on NVIDIA GEFORCE GTX 1050i at 1.29 GHz with 4-

B DDR5. Our proposed architecture is implemented on the Xil-

nx Virtex-7 xc7vx485 FPGA chip by using Verilog HDL on Vivado

016.2 version, which runs at 100 MHz. We utilize single precision

oating point arithmetics to represent complex numbers to enable

arger dynamic range. To perform a preliminary evaluation of our

ardware architecture, we choose FPGA rather than ASIC to get a

rompt result. It can be transfered to ASIC implementation easily. 

In our hardware design, the parameter setting is as follows,

 E 1 = 1 × 4 , P E 2 = 20 × 2 , where PE 1 denotes the number of PE

n matrix mult1 module, PE 2 denotes that in matrix mult2 mod-

le. For both matrix mult1 and mult2 module, the architecture is

hown as Fig. 2 . For matrix multiplication A · B processing in ma-

rix mult1 or matrix mult2 module, each time, we load a partial

olumn of A and a partial row of B to each PE. We use X n to denote

he size of such partial row in Stage n ( n = 1 , 2 , 3 ) in tensor recon-
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Fig. 5. Performance comparison between software and our hardware design. (a), Time consumption comparison of HOSVD module. (b), Time consumption comparison of 

core tensor calculation and Hankel tensor reconstruction module. 
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truction part. Likewise, we use Y n to denote the size of such par-

ial column. In our implementation, all of these are parameterized,

nd we set X 1 = 9 , X 2 = 15 , Y 1 = Y 2 = 10 and Y 3 = X 3 = 20 . For the

nput time series x , they are generated six times with lengths of

 

9 , 2 10 , 2 11 , 2 12 , 2 13 and 2 14 , according to the following equation

 [ n ] = s [ n ] + e [ n ] ; (12)

here s [ n ] is a narrow-band signal, e [ n ] is normalized non-

tationary Gaussian white noise where the noise variance changes

ith time. When the signal length increases, the size of RAM that

tores U x , h , intermediate FFT result in core tensor reconstruction

nd the Hankelized result will increase accordingly while other

ardware components all remain unchanged. For N = 2048 , re-

ource usage for the implemented FPGA design is listed in Table 3 .

or the HOSVD module, since the number of iterations highly de-

ends on the input data and initial guess, we compare the time

onsumption for one iteration in Fig. 5 a. In our proposed design,

e use subspace iteration algorithm. As a fair comparison, it con-

umes less time than the software implementation using the same

lgorithm. For the software implementation adopting Lanczos al-

orithm, it is more efficient but more complex and not resource-

riendly. 

From Fig. 5 , we can see that, for FPGA implementation run-

ing at 100 MHz, it is better than CPU one but slightly worse than

PU one. However, the performance gap between GPU and FPGA

mplementation is narrowing with input signal length increasing.

or input signal with a length of 163,84, GPU only 2 times faster

han FPGA implementation run at 100 MHz. If we barely imple-

ent the HOSVD module in another FPGA board, HOSVD module

an run at 250 MHz due to more space for routing. In this case,

PGA even outperforms GPU when the input signal is longer than

63,84. Though for FPGA implementation running at low clock fre-

uency, GPU have better performance, it is known that it is not ef-

cient in terms of power. If performance is of most importance, we
an build up a heterogeneous system where HOSVD is performed

n GPU, while the remaining computation on FPGA. 

For core tensor computation and tensor reconstruction module,

hey are executed sequentially. From Fig. 5 b we can see that, our

roposed design significantly outperforms the software implemen-

ation and the GPU one. In detail, for the 6 evaluation samples,

he speed-up compared with CPU implementation range from 172

o 1004. While compared with GPU implementation, the speed-up

ange from 5 to 40. This mainly benefits from the heavy pipeline

esign in tensor reconstruction and Hankelization process. In FPGA

r ASIC implementation, we can easily determine the execution

ime of each pipeline stage by alternating the number of PE in each

tage. Though GPU is powerful in matrix multiplication, we cannot

etermine such time beforehand. As a result, we can’t build up a

fficient pipeline that each stage is overlapped perfectly. 

In our proposed design, the block matrix multiplication scheme

eeds to first divide the two input matrices into sub-blocks. If the

imension is not divisible by the number of PEs, we should append

ero rows or columns to make the dimension divisible, which may

ause performance degeneracy slightly. In order to observe how

omputation order infect the performance, we change the tensor-

atrix multiplication sequence and decompose different size ten-

or. As shown in the first two rows in Table 2 , in Stage 3, we

hould divide 799 and 609 by 20 respectively. For the first case,

e only append 1 zero row, while for second case, we should ap-

end 11 zero rows. As a result, the acceleration rate decrease ac-

ordingly. Eq. (7) contains three tensor-matrix multiplications. The

omputation order of these multiplications does not affect the fi-

al result but can affect the computing time when they are im-

lemented in parallel. Since the first two tensor-matrix multiplica-

ions will be fed to the smaller matrix multiplication module, then

he last one fed to the larger one in terms of the number of PEs

eeded, the arrangement of the computing order in Eq. (7) will in-

uence the processor speed, as shown in Table 2 . In this table, we

nly include the execution time of Stage 4 in software and hard-
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Table 2 

Time consumption comparison of Stage 3 among different Hankel tensor construction schemes and computation orders for same input time series with 2048 

points, following the signal construction method described at the beginning of Section 2 . S1, S2 and S3 represent the row numbers of U x allocated in Stages 1, 2 

and 3 respectively. Speed-up rate1 refers to the speedup over CPU implementation, while Speed-up rate2 refers to that over GPU implementation. . 

S1 S2 S3 CPU Time Consumption(s) GPU Time Consumption(s) Our Design Time Consumption(s) Speed-up Rate1 Speed-up Rate2 

800 16 799 19.376 0.47552 0.024418 794 19 

800 33 609 30.515 1.0804 0.047737 639 22 

800 41 449 28.816 0.81773 0.059396 485 13 

10 0 0 65 409 50.452 1.5005 0.103118 489 14 

409 65 10 0 0 50.834 1.4482 0.084755 600 17 

409 10 0 0 65 51.857 1.5495 0.299867 172 5 

Table 3 

Proposed design resource usage . 

Used Available Utilization 

LUT 189,009 303,600 62.26% 

Register 245,021 607,200 40.35% 

RAMB36E1 61 2060 2.96% 

RAMB18E1 381 1030 36.99% 

DSP48E 705 2800 25.18% 
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ware implementation. The first three rows represent different Han-

kel construction. It can be seen that, S 3 should be close to multi-

ples of X 3 , i.e. 400, while the other two should be close to multi-

ples of X 1 , X 2 , i.e. 10. The last three rows in Table 2 represent the

same tensor construction but with different arrangements of the

computing order of Eq. (7) . We observe that a large row number

of U 

� 
x should be placed to the last in the tensor-matrix multiplica-

tion sequence to achieve a fast computation. However, for the CPU

and GPU implementation, the execution time is only related to the

size of the Hankel tensor, i.e. the value of N 1 · N 2 · N 3 . The FPGA im-

plementation processing a batch of data in a PE group with fixed

number. It is very unlikely that, in the GPU and CPU implemen-

tation, the computation is broken down into element-wise com-

putations. Then for the CPU, these element-wise computations are

executed in parallel, while for the GPU, such are then assigned to

multiple cores. As a result, there is no mismatch between the size

of tensor and the size of PE. The execution time of GPU implemen-

tation also only relate to the size of the Hankel tensor. 

5. Conclusions 

In this paper, we have proposed a high performance hard-

ware architecture targeting on singular spectrum analysis of Han-

kel tensors. Firstly, by exploiting the Hankel property and re-order

the computing process, time consumption of Tucker decomposi-

tion of Hankel tensors is reduced significantly. Then, through full

pipeline design, the computation is further accelerated. Comput-

ing resources are shared within different functional blocks, where

computation is not executed at the same time. To the best of our

knowledge, this is the first FPGA architecture on the speed-up of

Tucker decomposition and its reconstruction. The hardware can

also process tensors without the Hankel property by using the ten-

sor reconstruction module to obtain the core tensor with the Han-

kelization process disabled. Our experiment results shows that our

design outperforms software implementation significantly. 
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